
Essential equilibria of large generalized games 

Author(s): Sofía Correa and Juan Pablo Torres-Martínez 

Source: Economic Theory , November 2014, Vol. 57, No. 3 (November 2014), pp. 479-513  

Published by: Springer 

Stable URL: https://www.jstor.org/stable/43562875

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

Springer  is collaborating with JSTOR to digitize, preserve and extend access to Economic 
Theory

This content downloaded from 
�������������67.86.125.187 on Mon, 19 Oct 2020 16:23:49 UTC������������� 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/43562875


 Econ Theory (2014) 57:479-513
 DOI 1 0. 1 007/s00 1 99-0 1 4-082 1 -3

 RESEARCH ARTICLE ~~

 Essential equilibria of large generalized games

 Sofía Correa • Juan Pablo Torres-Martínez

 Received: 3 December 2012 / Accepted: 15 May 2014 / Published online: 3 June 2014
 © Springer- Verlag Berlin Heidelberg 2014

 Abstract We characterize the essential stability of games with a continuum of players,
 where strategy profiles may affect objective functions and admissible strategies. Taking

 into account the perturbations defined by a continuous mapping from a complete metric

 space of parameters to the space of continuous games, we prove that essential stability
 is a generic property and every game has a stable subset of equilibria. These results
 are extended to discontinuous large generalized games assuming that only payoff
 functions are subject to perturbations. We apply our results in an electoral game with
 a continuum of Cournot-Nash equilibria, where the unique essential equilibrium is
 that only politically engaged players participate in the electoral process. In addition,
 employing our results for discontinuous games, we determine the stability properties
 of competitive prices in large economies.

 Keywords Large generalized games • Essential equilibria • Essential sets
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 480 S. Correa, J. P. Torres-Martínez

 1 Introduction

 In this study, we focus on the essential stability of Cournot-Nash equilibria for large
 generalized games, analyzing how equilibrium strategies change when some charac-
 teristics of the game are perturbed. We allow any kind of perturbation, provided that
 it can be defined through a continuous parametrization of the space of games over a
 complete metric space of parameters.

 We consider large generalized games, i.e., games with a continuum of non-atomic
 players and a finite number of atomic players, where strategy profiles may affect play-
 ers' objective functions and admissible strategies. Decisions made by non-atomic play-
 ers are codified and aggregated, generating messages to the participants to the game.
 Under mild conditions on the characteristics of the game, a pure strategy Cournot-Nash
 equilibrium always exists [see Balder (1999, 2002); Carmona and Podczeck (2014)].

 In this context, it is natural to ask how equilibrium strategies of atomic players
 and equilibrium messages induced by decisions made by non-atomic players - the
 pieces of information that fully determine the players' strategic behavior - change
 when the characteristics of the game are perturbed. We focus on essential stability,
 that is, we determine conditions under which the Cournot-Nash equilibria of a game
 can be approximated by equilibria of perturbed games.

 We begin our analysis of essential stability assuming that games are continuous1
 and any of their characteristics can be perturbed, i.e., objective functions, action sets,
 or correspondences of admissible strategies. In this context, there is a dense residual
 subset of the space of large generalized games in which messages and atomic players'
 strategies associated with Cournot-Nash equilibria are stable to perturbations (Theo-
 rem l).2 In particular, uniqueness of equilibrium messages and strategies for atomic
 players is a sufficient condition for stability. We also analyze the stability of subsets
 of equilibrium messages and actions, obtaining analogous results to those ensured in
 the literature for convex games with finitely many players: every game has essential
 subsets of Cournot-Nash equilibria (Theorem 2).

 These stability results are extended to allow a broader range of perturbations, which

 we capture through the parametrizations of the space of games. If the set of parameters
 that can be perturbed constitutes a complete metric space and the mapping associating
 these parameters with large generalized games is continuous, then stability results pre-
 viously described still hold (Theorem 3) and essential sets are stable too (Theorem 4).

 If we do not assume continuity of objective functions, and admissible strategies
 are subject to perturbations, then the space of large generalized games with a non-
 empty set of equilibria is not necessarily complete, which is a crucial property to
 guarantee our previous results. For this reason, we extend the analysis to discontinuous
 large generalized games assuming that only payoff functions can be perturbed. To
 ensure equilibrium existence, we follow the results of Carmona and Podczeck (2014),
 which extended the model of Balder (2002) to the discontinuous case. We focus on
 large generalized games where players have upper hemicontinuous correspondences

 1 That is, for every player, objective functions and correspondences of admissible strategies are continuous.

 2 A subset of a metric space is residual if it contains the intersection of a countable family of dense and
 open sets.
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 Essential equilibria of large generalized games 48 1

 of admissible strategies and both payoff functions of non-atomic players and the sum
 of atomic players' payoff functions are upper semicontinuous. In this context, we
 prove that the collection of generalized payoff secure games [see Carbonell-Nicolau
 (2010); Carmona and Podczeck (2014, Definition 4)] is a complete metric space.
 Hence, when perturbations on payoff functions can be captured through continuous
 parametrizations, Cournot-Nash equilibria are generically essential and any large game
 has essential subsets of equilibria that are stable (Theorem 5). Since our model includes
 finite-player games as a particular case, our findings about stability for discontinuous
 games complement the previous results of Yu (1999) and Carbonell-Nicolau (2010).

 To obtain our results about essential stability, we prove that the compact- valued cor-

 respondence associating each generalized game with its set of equilibrium messages-
 actions, called Cournot-Nash correspondence, has a closed graph. To guarantee this
 property, we use the fact that the set of non-atomic players has finite measure and
 their strategies are transformed into finite-dimensional messages. Indeed, under these
 conditions, we ensure the closed graph property of the Cournot-Nash correspondence
 by applying the multidimensional Fatou's Lemma [see Hildenbrand (1974, Lemma 3,
 page 69)].

 We illustrate our results through some applications. Since essential stability can
 be viewed as a refinement of equilibrium, we consider an electoral game in which
 the unique essential equilibrium is the one consistent with the participation of only
 politically engaged individuals. Also, based on our results for discontinuous games,
 we analyze the stability of equilibrium prices in large economies.

 The rest of the paper is organized as follows. Section 2 discusses the related liter-
 ature. In Sect. 3, we describe the space of large generalized games. In Sects. 4 and 5,
 we analyze essential stability properties of Cournot-Nash equilibria when objective
 functions and correspondences of admissible strategies are continuous. In Sect. 6, we
 apply our results to an electoral game. In Sect. 7, we extend our model to include some
 classes of discontinuous games, and we apply these extensions in Sect. 8 to analyze
 the stability of prices in large competitive markets. The proofs of our main results are
 given in the Appendix.

 2 Related literature

 The concept of essential stability has its origins in mathematical analysis literature,
 where it was introduced as a property of fixed points of functions and correspondences.
 In a seminal paper, Fort (1950) introduces the concept of essential fixed point of a
 function: a fixed point is essential if it can be approximated by fixed points of functions

 close to the original one. In addition, a function is essential if it has only essential fixed
 points. Considering the set of continuous functions from a compact metric space to
 itself, Fort (1950) proves that the set of essential functions is dense. He also proves that

 any continuous function which has only one fixed point is essential. These concepts
 and properties have natural extensions to multivalued mappings, as shown by Jiang
 (1962). Since not all mappings are essential, it is natural to analyze the stability of
 subsets of fixed points. With this aim, Kinoshita (1952) introduces the concept of
 essential component of the set of fixed points of a function: a maximal connected set
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 482 S. Correa, J. P. Torres-Martínez

 that is stable to perturbations on the characteristics of the function. He proves that any
 continuous mapping has at least one essential component of fixed points. Jiang (1963)
 and Yu and Yang (2004) extend these results to multivalued mappings, by proving that
 compact-valued upper hemicontinuous correspondences have at least one essential
 component. These results are complemented by Yu et al. (2005) who also analyze
 how essential components change when mappings are perturbed.
 This literature motivates the study of equilibrium stability in games. As in every

 noncooperative game the set of Nash equilibria coincides with the set of fixed points
 of the aggregate best response correspondence, the techniques described above allow
 to analyze how the equilibria of a game change when payoffs and action sets are
 perturbed. In this direction, essential stability of Nash equilibria of games with finitely
 many players is studied by Wu and Jiang (1962), Yu (1999), Yu et al. (2005), Zhou et
 al. (2007), Yu (2009), Carbonell-Nicolau (2010), and Scalzo (2013).
 More precisely, Wu and Jiang (1962) address the stability of the set of Nash equi-

 libria for games with a finite number of players and pure strategies. They ensure that
 any game can be approximated by a game whose equilibria are all essential. Yu (1999)
 formalizes and extends these results for convex games with a finite number of players
 and infinitely many strategies, analyzing perturbations in payoffs, action sets, and cor-

 respondences of admissible strategies. Jiang (1963), Yu et al. (2005), and Yu (2009)
 analyze the existence of essential components of the set of Nash equilibria for games
 and generalized games. Zhou et al. (2007) study the notion of essential stability for
 mixed-strategy equilibria in games with continuous payoff functions, compact sets of
 pure strategies, and finitely many players. They also compare the concept of essential
 stability with strategic stability, a notion studied by Kohlberg and Mertens (1986),
 Hillas (1990), and Al-Najjar (1995). Allowing for discontinuities on objective func-
 tions, Yu (1999), Carbonell-Nicolau (2010), and Scalzo (2013) analyze the essential
 stability of Nash equilibria for games with finitely many players.
 As we describe in the introduction, our goal is to contribute to this growing liter-

 ature by addressing essential stability properties of Cournot-Nash equilibria in large
 generalized games. However, results of essential stability for games with finitely many
 players take advantage of the fact that the equilibrium correspondence3 has a closed
 graph, with non-empty and compact values. In fact, with these properties, the equi-
 librium correspondence is generically lower hemicontinuous, which in turn implies
 essential stability as a generic property.
 In our case, under mild conditions on the features of a large generalized game,

 a pure strategy Cournot-Nash equilibrium always exists.4 However, the equilibrium
 correspondence may not have compact values (see footnote 8), and therefore, the tra-
 ditional analysis of essential stability cannot be implemented directly in our context.
 Nevertheless, associated with any Cournot-Nash equilibrium of a large generalized
 game, there is a vector of messages (generated by strategy profiles of non-atomic play-
 ers) and a vector of optimal strategies of atomic players. These message-action vectors
 constitute all the relevant information that a player takes into account to make optimal

 3 That is, the correspondence that associates games with the set of its pure strategy equilibria.

 4 See Schmeidler (1973) and Rath (1992) for continuous large games, Balder (1999, 2002) for continuous
 large generalized games, and Carmona and Podczeck (2014) for discontinuous large generalized games.
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 Essential equilibria of large generalized games 483

 decisions. In addition, the correspondence that associates games with the set of equi-
 librium messages and atomic players' profiles has closed graph and compact values
 (see Theorem 1 and 5). Hence, we focus our analysis on the stability of equilibrium
 messages-actions with respect to perturbations in the game.

 3 Continuous large generalized games

 Through our model, some characteristics of large generalized games are fixed and
 summarized by a tuple (71 , T2, K, (Kt)teT2 » #)» where T' U 72 is a non-empty set. T'
 is a compact subset of a metric space and represents the family of non-atomic players.
 There is a a-algebra A and a finite measure /x such that ( T',A , fi) is a complete
 atomless measure space. The set of atomic players is represented by the finite set T2.
 K is the non-empty and compact metric space where non-atomic players' strategies
 belong. Each atomic player t e T2 has strategies in Kt9 which is a non-empty and
 compact subset of a normed vector space equipped with a metric induced by a norm.
 The function H : T' x K -> Rm codifies non-atomic players' strategies, and it is
 continuous with respect to the product topology induced by the metrics of T' and K.
 Let G((Kt, r,, Kf)f€7ìu72) be a large generalized game where each player t e

 T' U Ti is characterized by a tuple (Kt, /}, ut). A non-atomic player t e T' has
 a non-empty and closed action space Kt c K , while each atomic player t e T2
 has a non-empty, closed, and convex action space Kt c Kt. We assume that the
 correspondence t eT' -» Kt is measurable, i.e., {t e T' : Kt fi F ^ 0} e A for each
 closed subset F of K.

 A strategy profile for non-atomic players is given by a function / : T' -+ K such

 that/(0 e ATř,foranyř e Ti. Any vectora = {at)teTi € FI/eT^ ^ isastrategy profile
 for atomic players. Given /€{1,2}, let Tl (( Kt)teT¡ ) be the space of strategy profiles

 for agents in T¡. In addition, for any t € f2. let Flt((Ks)szT2'{t)) := FLe^r} be
 the set of strategy profiles for agents in 72'{i}.

 Each participant to the game considers aggregated information about strategies
 of non-atomic players, that is, if non-atomic players choose a strategy profile / e
 Tx ((Kt)t^Ti )> then the relevant characteristics of this profile are coded by the function
 H , and each player takes into account aggregated information about these available

 characteristics through the message m (/) := JT{ H(t, f(t))dß. In other words, m(/)
 is what the players know about the strategic choices of non-atomic players.

 We concentrate our attention only on strategy profiles for which messages are well
 defined. Thus, let ^((Kt)teTi) be the set of profiles / e such that
 #(•» / (•)) : T' - ► Rm is measurable.5 Therefore, the set of messages associated with
 non-atomic players' strategies is given by

 M((K,)teTi ) = • J H(t, f{t))dn : / e .
 T'

 5 That is, for any Borelian set £ ç Kw, {/ € ^ : H(t , /(/)) € E} belongs to A.
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 484 S. Correa, J. P. Tomes-Martínez

 Let M = M((K)teT]),P = and P_t =
 F-t((KS)seT2'{t))-

 Messages and strategy profiles may restrict players' admissible strategies, that is,
 the set of strategies available for a player t e T' is determined by a correspondence rt :
 MxJ2 Kt with non-empty and compact values, where for every (m , a) e Mx F2,
 the correspondence t e T' rt(m, a) is measurable, i.e., {t e T' : rt(m, à) H F ^
 0} e A for each closed subset F of K. Analogously, feasible strategies for a player
 t e 72 are determined by a correspondence rt : M x Tit -» AT/ with non-empty,
 compact and convex values.

 Each / € T' has an objective function ut : K x M x f2 -+ R such that, for
 every (m, a) e M x T1, the function (í, x) e T' x K ~^ut( jc, m, a) is A x B(K)-
 measurable, where B(K) refers to the Borei a-algebra of K and A x B(K) denotes the
 product a -algebra. Also, the map U 'T'xKxMxF2 R given by U (t , x , m , a) =
 ut(x , m, a) is bounded. Each atomic player t e Ti has a bounded objective function
 ut : M x F2 R, which is quasi-concave on its own strategy at.

 Definition 1 ( Cournot-Nash Equilibrium) A Cournot-Nash equilibrium of a large
 generalized game G(XKt , /} , M/)ř€riur2) ÌS given by strategy profiles (/* , a*) e T1 x
 F2, with m(f*) € A/, such that

 (i) For almost all t e 71, /*(f) e rř(m*, a*), where m* = m(/*), and

 w,(/* (0, m*, a*) > «,(/(*), m' a*), V/(f) € r,(/n*, a*).

 (ii) For any t e Ti, a* € rř(m*, a* ,) and

 wr(m*, a*, ö*,) > ut(m*, atì a*ř), Vař € rt(m *, a*,).

 Assume that the following conditions hold:

 (Al) For any t e T' U 72, objective function ut is continuous.
 (A2) For any t e T' U 72, the correspondence rt is continuous .6

 Taking as given (71, 72, ř, ( Kt)t €r2, if), let G be the collection of large general-
 ized games satisfying the conditions described above, i.e., the set of continuous large
 generalized games where atomic players have quasi-concave objective functions and
 convex sets of admissible strategies. It follows from Balder (2002, Theorem 2.2.1)
 that any Q e G has a non-empty set of Cournot-Nash equilibria, denoted by CN((?).7

 6 Given t G T' , continuity of /} : M x T1 Kt requires that itjbe both upper hemicontinuous and lower
 hemicontinuous. Upper hemicontinuity is satisfied at (m, a) ^ M x T1 when for any open set A c Kt
 such that T} (m, a) ç A, there is an open neighborhood U ç M x F1 of (m, a) such that rt(m'% a') ç A
 for every (mf, a') e U. Lower hemicontinuity is satisfied at (m, a) € M xjF2 when for any open set
 A ç Kt such that /)(m, a) fi A ■£ 0, there is an open neighborhood U c M x T1 of (m, a) such that
 rt(m' û')fiA^0 for every (m' a') € C/. Same definitions apply for the correspondences of admissible
 strategies associated with atomic players (HiteTi •

 7 Under our assumptions, for every (m, a) e M x the correspondences t e T' -» Kt and t e T'
 rt(m,a) have measurable graph [see Aliprantis and Border (2006, Lemma 18.2 and Theorem 18.6)].
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 Essential equilibria of large generalized games 485

 We endow the set G with the following metric:

 P(Qi,Q2) = sup sup ^ ^ 'u](x,m,a) - uj(x,m,a)'
 (x,m,a)eK xMxF2

 + sup sup dfí (r/(m, a ), r2(m, a)) + sup dH (k],
 teh (m,a)zMxP-

 -I- max sup 'u](m,x,a-t) ~ uf(m9x,a-t)'

 + max sup dfí,t ( rhm , a_ř), r,2(m, a_,)J
 t€Tl (m,a-t)eMxfļt

 + max dHj ,

 where Q¡ = Qi((K}, du denotes the Hausdorff distance induced by
 the metric of K over the collection of its non-empty and compact subsets and, for
 every t e 72, the Hausdorff distance induced by the metric of Kt is denoted by du,t-

 Proposition 1 The space of continuous large generalized games (G, p) is complete .

 The proof is given in the Appendix.
 We point out that the correspondence associating the parameters that define a gen-

 eralized game with the set of its Cournot-Nash equilibria is not necessarily compact-
 valued,8 a property that was required by the previous literature on essential stability
 in games with finitely many players. However, given any Cournot-Nash equilibrium
 ( f*,a *) G CN(<7), the pair ( m(f*),a *) contains all the information that players
 take into account to make their decisions. Thus, we focus our analysis of stability on
 the effects that perturbations on the characteristics of a game have on both messages
 from non-atomic players and strategies of atomic players that are consistent with a
 Cournot-Nash equilibrium.9

 Footnote 7 continued

 On the other hand, Balder's result requires that players have a common universal action space. However,
 his result can be extended allowing different universal action spaces for atomic and non-atomic players [see
 Balder (2002), page 448, remark (v)].

 8 For instance, consider an electoral game with a continuum of non-atomic players T' = [0, 1 ], which vote
 for a party in { a , b }. Let xt be the action of player t € T' and assume that his objective function ut only takes
 into account the benefits that he receives from the election of parties, given by [vt (a), vt (b)}, weighted by
 the support that each party has in the population, i.e., ut = vt(a)ß({s e T' : xs = a}) + (fc)(l - ß(is €
 T' : xs = a})), where ß denotes the Lebesgue measure in [0, 1], that is, the utility level of a player t e T' in
 unaffected by his own action and, therefore, any measurable profile x : [0, 1] -► {a, b) constitutes a Nash
 equilibrium of the game. Hence, the set of Nash equilibria is not compact. However, if we consider that
 each player receives as a message the support that party a has in the population, m = ß({s g Ti : xs = a}),
 then the set of equilibrium messages is equal to [0, 1], which is a compact set.

 9 Since action profiles are coded using the function //, there may exist several Cournot-Nash equilibria
 inducing a same message. Even that, this indétermination does not have real effects on players utility levels.

 <0 Springer

This content downloaded from 
�������������67.86.125.187 on Mon, 19 Oct 2020 16:23:49 UTC������������� 

All use subject to https://about.jstor.org/terms



 486 S. Correa, J. P. Torres-Martínez

 Definition 2 ( The Cournot-Nash Correspondence) The Cournot-Nash correspon-

 dence of G is given by the multivalued mapping A : G -»JM x T2 that associates to
 any Q € G the set of messages and actions (m*, a*) e M x T1 such that for some
 /* e P we have m* = m(/*) and (/*, a *) € CN (£).

 4 Essential stability of equilibria for continuous games

 We analyze how the set of Cournot-Nash equilibria of a large generalized game in
 G changes when the characteristics of players are modified. Our analysis is based
 on the concept of essential stability introduced by Fort (1950) for fixed points of
 single- valued mappings and by Jiang (1962) for correspondences.

 Definition3 ( Essential Equilibrium) Let G7 c G. Given Qo e G ',(/*, a*) €
 CN(öo) is an essential equilibrium of Qo with respect to G7 when, for any open neigh-
 borhood O c M x T1 of (m(/*), a *) there exists € > 0 such that A(Q) fiO / 0
 for any Q e & satisfying p(Qo,Q) < The large generalized game Qo is essential
 with respect to G7 if all its Cournot-Nash equilibria are essential with respect to G7.

 Hence, a large generalized game Qo e G7 is essential with respect to G7 c G if
 and only if messages and atomic players' strategies associated with a Cournot-Nash
 equilibrium of Qo can be approximated by equilibrium messages and strategies of
 generalized games in G7 close to Qo . Note that if Qo is essential with respect to Gr,
 then it is essential with respect to any non-empty set G" c G; such that Qo e G".
 Unfortunately, as the following example shows, not all games in G are essential.

 Example 1 Suppose that T' = [0, 1], T2 = {ot},K = {0,1} and Ka
 Consider a generalized game Q where for each t e T', (Kt, rt) = (K,K),
 ( Ka , ra) = ( Kai Ka) and //(•, jc) = x. In addition, ua(rn,x) = -'m - x'2 and
 (ut(0, m, aa), ut(l, m, aa)) = (1, 1), Vi € T'. Note that, Q has a continuum of
 Cournot-Nash equilibria and A(Q) = {(À, k) e R2 : k e [0, 1]}.
 Given k e [0, 1] and € > 0, let be the game obtaining from Q by changing the

 objective functions of non-atomic players to

 , À,€/n x vl-ÍO+é'1)' forany t e [0, 1 - k]
 (° x O.m.Oa))- vl-ÍO+é'1)' ļ(ļ) i + e)) for forany any f t € e (1 [0, - A,, - k] 1].

 It follows that Q'¿ has only one Cournot-Nash equilibrium and A(Q'¿) = {(À, k)}.
 Since (>.,€) € [0, 1] x R++ is arbitrary and p(Q , Q'¿) < e, we conclude that Q has
 no essential Cournot-Nash equilibrium with respect to G. □

 Theorem 1 Given a closed set G7 c G, the collection of large generalized games that
 are essential with respect to G' is a dense residual subset of G7.10 For any Q e G7, if
 A (Q) is a singleton , then Q is essential with respect to G7.

 10 A subset of G' is residual if it contains the intersection of a countable family of dense and open subsets
 ofG'.
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 Essential equilibria of large generalized games 487

 The proof is given in the Appendix.
 It follows from Theorem 1 that given Ço e G', for any € > 0, an essential general-

 ized game Q e G' exists such that p(Qo,G) < £>
 The next example applies our results to show that equilibrium messages and atomic

 players strategies of an essential large game can be approximated by equilibrium
 messages and atomic player strategies of finite action large games.11

 Example 2 Let Q = G((Ktl rti ut)tgr''jT2) e G be an essential game with respect
 to G, with (Kt, Ks) = (F,, rs) es (K, Ks)f V(r, s) e T' x 72. The compactness of
 strategy sets ensures that for each t e T' U T2 , there is a countable and dense subset

 { xt,n '.ne N} of Kt . Thus, given ne N, let Qn = Qn((K ?, rtn , ut)teTiUT2 ) € G be
 the finite action generalized game characterized by JTtn = K? := {jcř,i , . . . , xt,n}. It
 follows that p(Q,Qn) converges to zero as n goes to infinity.

 As Q is essential with respect to G, it follows from Definition 3 that given messages
 and atomic players' strategies (m, a) e A(Ģ ), for each S > 0 there is n(S) e N such
 that, given n > n(S) some ( mn , an) e A{Qn) is ¿-close to (m, a). □

 Although there are games that do not have essential equilibria, any Q e G has
 subsets of Cournot-Nash equilibria that are stable. To formalize this property, we
 extend the concept of essential stability to subsets of equilibrium points.

 Definition 4 ( Essential Set ) Let G' c G. Given Ģo e G', a subset e(Qo) £ A(Qo)
 is essential with respect to G' if it is non-empty, compact, and for any open set O c
 M xP,

 [e(Qo) £ O] =► [3e > 0 : Q 6 G', p(Go> Q) < * ==> MG) n O ^ 0] .

 A minimal essential set with respect to Gr is a minimal element ordered by set inclusion

 in the family of essential subsets of A(Qo) with respect to G;. A component of A(Qo)
 is a maximal connected subset of A(Qq) ordered by set inclusion.

 Definition 4 adapts to our framework the concepts of essential sets and components
 that were introduced by Jiang (1963) and Yu and Yang (2004) in the context of stability
 of fixed point of multivalued mappings. These concepts were also addressed by Zhou et
 al. (2007) to study the stability of mixed-strategy equilibria in non-convex finite-player
 games.

 Since the Cournot-Nash correspondence A is upper hemicontinuous with non-
 empty and compact values (see the proof of Theorem 1), for any Q e G'cG, the
 set A(Q) is essential with respect to Gr. Moreover, given A c B c A(Q), if A is
 essential with respect to G' and B is compact, then B is essential with respect to G'
 too.12 Thus, we focus the attention on the existence of minimal essential sets.

 Let Gr ç G be a closed set. Some results can be inferred from Theorem 1:

 1 1 For general results of strategic approximations of continuous games by finite games, see Reny (201 1).

 12 Indeed, B is non-empty and compact. Also, for any open set O ç M x T1 such that ÄCO, we have
 that A c O . Thus, the essentiality of A with respect to G' ensures that B is essential too.
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 488 S. Correa, J. P. Torres-Martínez

 (i) If for some Q e G' there is an essential Cournot-Nash equilibrium (/*, a*) e
 CN(C?), then {(m(/*), a*)} is a minimal essential subset of A(Q) with respect to
 G'. Therefore, it follows from Theorem 1 that any closed set G'çG has a dense
 residual subset in which any game has at least one minimal essential subset with
 respect to G' that is also connected.

 (ii) Since for any Q e G' the set A(G) is compact, any component of A(Q) is non-
 empty, connected, and compact.13 Hence, when (/*, a*) e CN(Ģ) is essential
 with respect to G', the component associated with {(m(/*), a*)} is an essential
 subset of A(Ç) with respect to G' (because it is compact and contains the essential
 set {(w(/*),a*)}). Therefore, it follows from Theorem 1 that any closed set
 G'çG has a dense residual subset in which any game has at least one essential
 component.

 The following result extends the two properties above ensuring that they hold for
 every large generalized game when sets of strategies are subsets of normed spaces.

 Theorem 2 Given a closed set G' c G, for each Q € G' the following properties
 hold:

 (i) A minimal essential set of A(Q) with respect to Gf always exists.
 (ii) If A(Q) has a connected essential set with respect to G', then it has an essential

 component.
 (iii) If K is a convex subset of a normed space equipped with a metric induced by

 a normf then every minimal essential set of A(Q) is connected. Furthermore , if
 A(Q) is finite, then at least one Cournot-Nash equilibrium ofQ is essential with
 respect to G'.

 The proof is given in the Appendix.
 It is natural to ask whether the continuity of payoff functions is necessary to ensure

 the stability properties previously discussed. The following example points out that if
 players' objective functions are discontinuous, then the metric space of large gener-
 alized games with a non-empty set of Cournot-Nash equilibria becomes incomplete.
 Hence, the results of Fort (1950) and Jiang (1962) cannot be adapted to our framework,

 compromising the validity of Theorems 1 and 2.

 Example 3 Suppose that T' = [0, 1], T2 = 0, K = [0, 1] and H(t,x) = x. Thus,
 M = [0, 1].

 For any ne N, let Qn be the large generalized game where each t e T' is char-

 acterized by K " = [¿, l] , rtn = K J1 and unt = m, where u : [0, 1] x [0, 1] -* R is
 given by

 Í 2 when m ^ 0 A x = 0;
 u(x, m) - I x jn otker m case

 13 By definition, components are non-empty. Since a component is a union of connected sets with at least
 one common element, it is connected too. Since the closure of a connected set is connected, components

 of compact sets are closed and, therefore, compact [for more details, see Berge (1997, page 98)].
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 Essential equilibria of large generalized games 489

 The game Qn has a unique Cournot-Nash equilibrium, because every player t has
 the same dominant strategy f*(t) = 1. Therefore, A(Qn) = {1}.

 Let G be the discontinuous large generalized game where eaclh player t e T' is
 characterized by ÄTf = [0, 1], rt(m) = Kt and ut = u. Note that Q has an empty set
 of Cournot-Nash equilibria. Indeed, when m = 0, the optimal strategy of every player
 t is f(t) = 1, inducing the message mf = 1. Otherwise, when m ^ 0, every player t
 chooses f(t ) = 0, inducing the message mf = 0.
 Since limw p(Gn,G) = 0, the metric space of discontinuous large generalized

 games that have equilibria is incomplete. □

 To obtain the result of Example 3, it is crucial to allow perturbations on action sets.
 Indeed, when action sets and correspondences of admissible strategies are fixed, it is
 possible to extend our analysis to some spaces of discontinuous games (see Sect. 7).

 5 Essential stability for the parameterizations of the space G

 In this section, we discuss the stability of Cournot-Nash equilibria when only some
 characteristics of the large generalized game are perturbed.

 Definition 5 ( Parametrization ) A parametrization T = ((X, r), k ) of G is given by
 a complete metric space of parameters (X, r) and a continuous function k : X -* G
 that associates parameters with generalized games.

 Definition 6 (T -Essential Equilibrium) Let T = ((X, r), k) be a parametrization of
 G. Given Xq e X, a Cournot-Nash equilibrium (/*, a*) e CN(k(Xq)) is essential
 with respect to X under /c, if for any open neighborhood O ç M x T2 of (m(/*), a *),
 there exists € > 0 such that A(k(X)) (10^0 for any parameter X e X satisfying
 r(Ab, X) <€. A generalized game Go e G is T-essential if there exists Xo e X such
 that Go = k(Xq) and all its Cournot-Nash equilibria are essential with respect to X
 under k.

 Definition? (T -Essential Set) Given Go € G, a subset e(Go ) ^ A(Go) is T-
 essential - or essential with respect to X under k - if there exists a parameter Xq e X
 such that (Oöo = k(<%o); (ii) e(Qo ) is non-empty and compact; and (iii) for any open
 set O c M x T1 with e(Go) Ç O there exists € > 0 such that, if X e X and
 r(Ab, X) < e, then A(k(X)) n O ^ 0.

 Some remarks:

 (i) Since k : X -► G is (r, p)-continuous, G is essential with respect to G' c G if
 and only if it is T-essential for any parametrization T = ((X, r), k ) such that
 G = k(X) for some X e X.

 (ii) Assume that T = ((X, r), k) satisfies X c G, r = p, and k is the immersion of
 X on G. Then, for any X e X, k(X) is T-essential if and only if X is essential
 with respect to X.

 The following result states stability properties of Cournot-Nash equilibria when
 perturbations are determined by a parametrization of G. Hence, we extend Theorems
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 490 S. Correa, J. P. Torres-Martínez

 1 and 2, obtaining stability results of Cournot-Nash equilibria when some but not
 necessarily all characteristics that define a generalized game are allowed to change.14

 Theorem 3 Given a parametrization T = ((X, r), k) of G, the collection of parame-
 ters X e X for which k ( X ) is T -essential is a dense residual subset ofX. Furthermore,
 for any X e X, we have that

 (i) If A(k(X)) is a singleton , then k(X) is T -essential.
 (ii) There is a minimal T -essential subset of A(k(X)).
 (iii) Any T -essential and connected set m(X) ç A(k(X)) is contained in a T-

 essential component.
 (iv) Suppose that X is a convex subset of a normed space and r is a metric induced

 by a norm. Then , every minimal T -essential subset of A(k(X)) is connected.

 Proof The proof of Theorem 1 ensures that A has closed graph with non-empty and
 compact values. Since kX -► G is continuous and (X, r) is a complete metric space,
 the same properties hold for the correspondence Aok :X-» M xF2. Hence, the
 first two properties follow from identical arguments to those made in the proof of
 Theorem 1 . Also, (ii)- (iv) can be obtained by analogous arguments to those made in
 the proof of Theorem 2, changing (G, p, A) by (X, r, A o k). □

 The following example shows that the continuity requirement on the definition of
 a parametrization ((X, r), k) cannot be relaxed without compromising the results of
 Theorem 3.

 Example 4 Assume that T' - [0, 1] and K is a convex subset of a normed space
 with a metric induced by a norm. Fix G',Gi £ G such that A(G') n A(Gi) = 0»
 and consider a tuple T = ((X, r), k) with X = [0, 1], r(*i, *2) = 1*1 _ *2!. and
 k(X) = a(X)Gi + (1 - a(X))Gi , Vf e [0, 1], where a : [0, 1] -* {0, 1} satisfies
 a(t) = 0 if and only if t is a rational number.15

 Note that, as A{Q') and A{Gi) are disjoint compact sets, there are disjoint open
 sets Ou O2 ç M X T1 such that A{Qì) C 0¿, V/ e {1, 2}. Thus, it follows from
 Definition 6 that the collection of parameters X e X for which k(X) is T-essential is
 an empty set. □

 Following the ideas of Yu, Yang, and Xiang (2005, Theorems 4.1 and 4.2), we end
 this section with results about the stability of essential sets and components.

 14 For instance, when there are personalized perturbations on players' characteristics, as an example, fix a

 game Q = G((K t, H, ut)teTļ UTl) e G. Given i e {1, 2}, let 7)û, 7}*, Tf ç 7{ be, respectively, the subsets
 of players in T¡ for which we allow perturbations on objective functions, on strategy sets, and on the corre-
 spondences of admissible strategies. Let Gg ç G be the set of generalized games Q{{Kt, r r, ut)t^T''JTi)

 such that (1) for any t € (T''Tf) U (7^7"^), ūt = «,;(2)foranyí 6 (Ti'T¡) U (Tļ'Tļ), K, = tf,;and
 (3) for any t e {T' 'Tjc) U (T2't£), F, = T,. Since G g is p-closed, it follows that (Gg, p ) is a complete
 metric space. Therefore, since the immersion i : Gg G is continuous, ((Gg, p), t) is a parametrization
 of G.

 15 Suppose that Qx = G'{{K¡ < rt' u})teTluT2) ««d G 2 = QlWf . *7 , WiU^)- Since K and Kt,
 where t G 72, are convex subsets of normed spaces with metrics induced by norms, for each k e [0, 1], the
 convex combination kQ' + (1- A)£/2 is well defined and given by the game -f (1 -k)Kf , krf +(1 -

 A.)Tř2, -I- (1 -k)uļ)teT''JT2)- Recai1 that. ÍPven subsets A and B of a vectorial space, ÀA + (1 - k)B :=
 {ka + (1 - k)b : (a, b) e A x B).
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 Essential equilibria of large generalized games 49 1

 Definition 8 ( Stability of Sets) Fix a parametrization T = ((X, r), k) and X e X.

 (i) The set E ç A(k(X)) is stable if for every € > 0, there is S > 0 such that, given
 X' e Xwithr(A' X') < 8, there exists a minimal T-essential set E' ç A{k(X'))
 for which

 E' ç BU, E] := {(m, a) e M x P : 3 (m;, a') e E, â((m, a), (m', a')) < e},

 where a is the metric associated with the product topology of Rm x T1.
 (ii) The set E ç A(k(X)) is strongly stable if for every 6 > 0, there is 8 > 0 such

 that, given X' e X with t(X, X') < 8 , there exists a T-essential component
 E' c A(k(X')) for which E' ç B[e, E].

 Note that, if £ e A(k(X)) is strongly stable, then it is stable.16 Also, any subset
 of A(k(X)) which contains a (strongly) stable set is (strongly) stable too.

 Theorem 4 Given a parametrization T = ((X, r), k ) and X e X, the T-essential
 subsets o1A(k(X)) are stable. Furthermore , ifX is a convex subset of a normed space
 and x is induced by a norm, then the T -essential components of A(k(X)) are strongly
 stable.

 The proof is given in the Appendix.

 6 Essential stability as a rationale for electoral participation

 In a recent paper, Barlo and Cannona (2011) introduced the refinement concept of
 strategic equilibria in large games. Intuitively, a Nash equilibrium of a large game
 is strategic if it is the limit of equilibria of abstract perturbed games, where players
 believe that they have a positive impact on the social choice.17 As an application
 of their results, they give a rationale to explain why electors vote for their favorite
 candidate. Introducing a large game with proportional voting, they show that there is
 a continuum of Cournot-Nash equilibria, but only one strategic equilibrium: that in
 which electors vote by their favorite party [see Barlo and Carmona (201 1, Example
 2.1)].

 Inspired by this result, we analyze a large generalized electoral game where electors
 have different degrees of political interest. The Cournot-Nash equilibrium where only
 politically engaged players vote and support their favorite party appears as the unique
 T-essential equilibrium of our electoral game, for some parametrization T.

 16 It is sufficient to prove that any T -essential component contains a minimal T-essential set. Fix an T-
 essential component C ç A(k(X)). Let Sc be the family of T-essential subsets of A(k{X)) contained
 in C, endowed with the partial order determined by set inclusion. Since essential sets are non-empty and
 compact, any totally ordered subset of «Sc has a lower bound. By Zorn's Lemma, Sc has a minimal element,
 which concludes the proof.

 17 More precisely, given a large game Q with only non-atomic players, for any € > 0 define an e-perturbed
 game Ge where every player perceives thathe, but no other, has a positive small impact on the social choice.
 Then, following our notation, (/, a) e x is a strategic equilibrium for a game Q if there exists
 {f*UeN C (0, 1) decreasing to zero, and a sequence {(/*, a*)UeN C T1 x^2 converging to (/, a), such
 that (fi, cik) is a Cournot-Nash equilibrium for Ç€k for any k e N.
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 492 S. Correa, J. P. Torres-Martínez

 Given a set of parties P = {1, . . . , /?} and a parameter 'i > 0, consider an
 electoral game £a = £a(T' , Ti, K, (Kt)tzT2< H, ( Kt , /}, where for any
 non-atomic player í € 71 := [0, 1], the action space is given by Kt = K :=

 ļ C*i, . . . , Xp) e Z+ : Xp=i - *}• Strategies of other players do not affect non-
 atomic players' admissible actions, i.e., rt = K, Vf^€ 7i. Thus, any non-atomic
 player can vote for a party p e P by choosing x e K such that xp = 1, or she can
 abstain from voting by choosing (jci , . . . , Jtp) = 0.

 Each t e T' gives an importance vt(p) > 0 to party p e P and has a favorite party
 pf e P, i.e., vt(pf) > vt(p) for all p e P'{pļ }. Her objective function is given by
 the weighted average of the utilities obtained from individual parties and a component
 that reflects the private level of satisfaction associated with her action, that is, for any

 X = *p) € Kt,

 P P

 u?(x,a) = v,(p)ap+a v,(p ) - r¡t)xp,
 p= l p= l

 where ap is the probability that party p wins the election, and r]t > 0 measures the
 electoral engagement of player t. Indeed, when a > 0, as greater iļt less interested in
 the election would be player t. We assume that for any t e Ti either rļt > vt(p*) or
 % < vt(p*). The set of politically engaged players is defined as T* = [t eT' ' i)t <
 vt (pf)}, and we assume that it is a positive measure subset of T' .
 On the other hand, there is an atomic player Ti - {e} whose purpose is to

 determine the probabilities (a',...,ap) that parties have to win. These probabil-
 ities are taken as given by non-atomic players. Hence, re = Ke = Ke :-

 |(zi, . . . , zP) € : Xp= i Zp = l} and

 J, / ¿ '2
 ue(m,a) - -jT I ap 2_, mp' ~mp ļ <

 P=i ' p'= l /

 where m = (mi, ... , mj) is the message obtained from non-atomic players' votes,
 assuming that H(t,x) = x. In other words, when a positive measure of play-
 ers votes, probabilities are given by the proportion of issued votes that each party
 receives.

 In any generalized game Sa , with a > 0, the strategy chosen by a non-atomic player
 does not affect the social choice. However, when a > 0, each non-atomic player gives

 a private value to actions and, therefore, her vote affects her utility level.
 Consider the case where non-atomic players do not give importance to their strate-

 gies, i.e., a = 0. Then, given a measurable strategy profile x :T' -*■ K and a strategy
 a e Ke, the vector
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 ('•(s&U)' "A"*»"*
 ( X , a) , if fTļ x(t)dt = 0;

 constitutes a Cournot-Nash equilibrium for £o- Therefore, when electors do not value
 electoral participation, there is a continuum of equilibria.

 On the other hand, for any a > 0, the generalized game £a has only one Cournot-
 Nash equilibrium. Indeed, any player t e T* votes for his favorite party, while any
 player in T''T* does not vote. As T* has positive measure, the equilibrium vector of
 probabilities is well defined. Hence, it follows from Theorem 1 that £a is an essential
 generalized game for any a. > 0.

 Since the space ([0, 1], | • |) is complete and k : [0, 1] G given by ac(q 0 = £a is
 continuous, T = (([0, 1], |-|), k) isa parametrization of G, in the sense of Definition 5.
 Therefore, we conclude that So - the electoral game where players do not give any
 value to their private strategies - has a unique T -essential Cournot-Nash equilibrium,
 the one in which only politically engaged players vote in support of their favorite party.
 In this way, we obtain a rationale for electoral participation of politically engaged
 agents using essential stability as a refinement concept of Cournot-Nash equilibria.

 Note that, under alternative perturbations, we can still ensure that the only essential
 equilibrium is that in which only politically engaged players vote. It is sufficient that
 only non-atomic players' payoff functions suffer perturbations, and the importance
 level that players give to the result of the election be small enough to maintain the
 same preferences over alternatives.18

 7 Essential equilibria of discontinuous large generalized games

 In this section, we extend the previous results of essential stability to a complete metric
 space that includes discontinuous large generalized games. Remember that, when
 payoff functions are discontinuous and perturbations on strategy sets are allowed, the
 space of large generalized games with a non-empty set of Cournot-Nash equilibria may
 be incomplete (see Example 3 above). For this reason, we only allow perturbations on
 players' objective functions.

 The following concept is required to state the main assumption that ensures equi-
 librium existence when games are discontinuous.

 Definition 9 Given a large generalized game G((Kt, rt, wř)/eriur2) and an open set
 U ç M X T1 , ((pt)t£TiUT2 are selectors of strategies supported on U when, for every
 t e T' U 7*2, <pt : U -» Kt is a closed correspondence with non-empty values, and for
 each im, a) € U , the following properties hold:

 18 Perturbations on actions sets for non-atomic players, or on any atomic player characteristic,
 may change the underlying institutional structure, destroying the electoral dimension of the game.
 However, a natural perturbation in action sets is to forbid the voluntary vote, by changing Kt to

 j(*l
 participate in the election. In addition, the T -essential Cournot-Nash equilibria of Sq are those in which
 politically engaged players support their favorite party.
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 494 S. Correa, J. P. Torres-Martínez

 (i) For each (f, k) e T' x T2 , (pt(m , a) x <pk(m , a) c 7ļ(m, a) x /¿(m, a-*).
 (ii) The correspondence f e Ti -» ^(m, a) is measurable.
 (iii) For any t e 72, ^(m, a) is convex.

 In order to make a more clear exposition, we remind the notion of continuous secu-
 rity of a large generalized game. This concept is introduced by Barelli and Meneghel
 (2012) for finite-player games and generalized by Cannona and Podczeck (2014) to
 ensure equilibrium existence in discontinuous large generalized games.

 Definition 10 (Continuous Security) A large generalized game Q((Kt, rt, ut)t£TiUT2)
 satisfies continuous security if for every (m , a) £ A ( Q ), there is an open neighborhood

 U of (m, a) such that, for some selectors of strategies ((pt)teTiUT2 supported on U>
 and for some measurable function a : T' U T2 -► [-00, + 00], we have that

 (i) For every (m7, a') € U, there exists a full measure set T[ ç 71 satisfying

 ut(x , m7, a') > a(f), Vi e TĻ Vjc e a' ),
 ut(m' x , a'_t) > a(t), Vf e 7i, Vjc € <pt(m' a').

 (ii) Fix (/', a') e F Xp such that («(/'), a') € I/, /'(i) € rt(m(f'),a') for
 almost all t e Tu and a't e rt(m(ff ), a'_t) for all t e Ti. Then, either there is a
 positive measure set T[ c T' such that ut(f't ), m(/' ), a') < a(t ), Vi e 7/, or
 there is t e T2 such that ut(m(f), a't , aL,) < a(i).

 As is shown by Carmona and Podczeck (2014), continuous security is weaker than
 Assumptions (A1-A2), and therefore, it is satisfied by any large generalized game in
 G. Furthermore, any large generalized game satisfying continuous security has a pure
 strategy Nash equilibrium [see Carmona and Podczeck (2014, Theorem 1)].
 To ensure that the set of discontinuous large generalized games is a complete metric

 space, we strengthen continuous security. With this purpose, we use the concept of
 generalized payoff security introduced by Barelli and Soza (2009) for finite-player
 games and extended by Carmona and Podczeck (2014) to large generalized games.

 Definition 11 (Generalized Payoff Security) A large generalized game Q((Kt , /1, ut)
 teT'UT2) satisfies generalized payoff security if for every (m, a) e M x T2 and € >
 0, there exists an open neighborhood U of (m, a) such that, for some selectors of
 strategies (^)/€r1ur2 supported on ř/, and for some measurable function a : 7iU72
 [-00, +00], we have that

 (i) For every (m7, a') e U , there exists a full measure set T[ c T' satisfying

 ut(x , m7, a') > a(t ), Vi e T{, Vx e (pt(m'y a'),

 ut(m' Jt, a!_t) > a(f), Vf e Ti , V* e <pt(m 7, a!).

 (ii) For any player ř e 72, we have that a(t) + € > sup^/^ a_t^ ut(m , x , a_ř). In
 addition, the set {f € Ti : a(f) + € > supjcerf(m a) m,(*, m, a)} has a measure
 greater than or equal to fi(T') - €.
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 Essential equilibria of large generalized games 495

 Definition 12 ( Upper Semicontinuous Games ) A large generalized game Q((Kt , rt ,
 ut)teTiöT2) is upper semicontinuous when the following conditions hold: (i) for each

 t e Ti, ut is upper semicontinuous; (ii) Xř€r2 wř is upper semicontinuous; and (iii)
 for any t e T' U Ti, rt is upper hemicontinuous.19

 Any Q((Kt , rtl ut)teT''JTi) ^at iS generalized payoff secure and upper semicon-
 tinuous satisfies continuous security, and therefore, it has a non-empty set of Cournot-

 Nash equilibria (see Lemma 2 in the Appendix). However, as the following example
 points out, allowing perturbations on action sets or on correspondences of admissi-
 ble strategies, the collection of generalized payoff secure and upper semicontinuous
 games is not necessarily a p-complete metric space.

 Example 5 Suppose that T' = [0, 1], T2 = 0, K = [0, 1] and H(t, x ) = x. Thus,
 M = [0,1]. For any ne N, let Qn be a game with only non-atomic players, char-
 acterized by Kļ = [0, 1 - , rtn{m) = [O, min{m, 1 - ¿ }], and uļ(f(t)9 m) =
 u(/(0)i where v : [0, 1] {0, 1} is such that v(x) = 1 if and only if x = 1. Hence,
 Qn is generalized payoff secure and upper semicontinuous.20
 Let Q be the large generalized game characterized by Kt = [0, 1], rt(m) =

 [0, min{m, 1}], and Mř(/(0,/n) = v(/(ř)). Itjbllows that p{Qn,G) converges to
 zero as n goes to infinity. However, although Q is upper semicontinuous, it is not
 generalized payoff secure.21 □

 Taking as given (T' , 72, K , ( Kt)t€T2 , (Kt, ^)ř€7,iur2)»letGí/ be the set of large
 generalized games Q((ut)teTiöT2) where, instead of Assumptions (Al) and (A2), gen-
 eralized payoff security and upper semicontinuity hold. Recall that, in G¿, it still
 requirs atomic players to have quasi-concave objective functions and convex sets of
 admissible strategies.

 Proposition 2 The space of discontinuous games (G¿, p) is complete.

 The proof is given in the Appendix.
 We can adapt our previous arguments and the results of Carbonell-Nicolau (2010)

 to ensure that the following properties of essential stability hold.

 Theorem 5 Given a parametrization T = ((X, r), k) of Gj, the collection of para-
 meters X € Xfor which k{X) is T -essential is a dense residual subset ofX.

 Furthermore , for any X e X, we have that

 (i) If A(k(X)) is a singleton , then k(X) is T -essential
 (ii) There is a minimal T -essential subset of A(k(X)).
 (iii) Every T -essential and connected set m{X) c A(k(X)) is contained in a T-

 essential component.

 19 Given a topological space Xy u : X R is upper semicontinuous if {jc e X : u{x) > a} is closed for
 any a G R.

 20 For every m e M and € > 0, generalized payoff security holds by choosing a == 0.

 21 Taking m = 1 and € g (0, 1), if generalized payoff security holds for Ģ, then Definition 1 l(i) implies
 that a(t) < 0, Vř e T' . On the other hand, Definition 1 1 (ii) ensures that there exists a positive measure set

 T' ç T' such that a(t ) + € > &upxeFļ^ ut(x , 1), which in turn implies that € > 1. A contradiction.
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 496 S. Correa, J. P. Torres-Martínez

 (iv) Every T -essential subset of A(k(X)) is stable.

 The proof is given in the Appendix.
 Suppose that non-atomic players' strategies have no effect on atomic players' deci-

 sions. Then, equilibrium strategies of atomic players are a Cournot-Nash equilibrium
 for the finite-player game in which they are the only participants. In this context,
 our model captures finite-player convex games as a particular case and Theorem 5
 regains previous results of Yu (1999, Theorems 4.2 and 4.3) and Carbonell-Nicolau
 (2010, Theorem 2).22 Notwithstanding, we extend these previous results to gener-
 alized games, including general types of perturbations on objective functions, and
 adding results of existence and stability for essential sets.23

 8 Stability of competitive prices in atomless economies

 We apply the results of the previous section to a large market in which we ensure that
 the set of competitive prices is generically stable to perturbations on preferences.
 We consider a pure exchange economy with a continuum of traders. There are

 L perfectly divisible commodities and a non-empty and compact metric space of
 consumers T' . There is a finite measure 'i and a a -algebra A such that (Tu A, fi) is
 a complete atomless measure space.
 Each t € T' is characterized by a non-empty and compact consumption space

 K = [0, A/]l, a continuous and strictly increasing utility function ut : K -> R+, and
 initial endowments w(t) € int (£).
 We assume that there is a finite number of agent types, i.e., there is a finite par-

 tition {T'¿}i<k<r of T' such that, for each k e {1, . . . , r} and f, s € T'¿ we have

 (utiw(t)) = (uSiw(s)). ^
 A competitive equilibrium is given by a vector of prices ^ p e A := {z e R+ :

 Ik II e = 1} and a consumption profile x : T' K such that
 (i) For almost all t e T',

 x(t) e argmax m, (*(*)),
 x(t)eBtÇp)

 where Bt(~p) := {jc e K : "p x < ~pw(t)}.
 (ii) Physical markets' clearing condition hold, i.e.,

 J (x(t) - w(t))dfjL = 0.
 Ti

 22 Yu (1999) also allows for perturbations on action sets and on correspondences of admissible strategies,
 but only for continuous games. Thus, we recover his results in Theorem 1.

 23 Scalzo (2013) extends the stability results of Carbonell-Nicolau (2010) to a space of finite-player dis-
 continuous games where an aggregator of payoff functions satisfies a property called generalized positively
 quasi-transfer continuity. This property relaxes both generalized payoff security and upper semicontinuity.
 Although we focus on large generalized games where atomic players satisfy the assumptions imposed by
 Carbonell-Nicolau (2010), we presume that the same arguments of Scalzo (2013) may be applied to relax
 these assumptions in our context.
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 Essential equilibria of large generalized games 497

 Our aim is to analyze the stability of equilibrium prices to perturbations on utility

 functions. Thus, leaving consumption sets and endowments fixed, let £ ((ut)teT') be
 the economy described above. Following analogous ideas to Reny (1999, Example
 3.2), define a large game Q((ut)teTi) where H(t, x) = x and each non-atomic player
 t e T' has an strategy set Kt = K and a payoff function vt : K x A -* R given by

 „ (v = Í "'(*)> when px < pw(t);
 „ *(*,/>) (v = ļ_lf otherwise;

 where p e A is the strategy of an atomic player, denoted by a, whose objective
 function

 Va(p , m) = p ļm - J

 depends on the message m = fTļ x(t)dfi generated by non-atomic players' strategies.
 Note that, the atomic player's objective function is continuous, while non-

 atomic players have upper semicontinuous and generalized payoff secure objective
 functions.24 Thus, for every ( ut)teT' satisfying the assumptions described above,
 G((ut)t€T') € G d- Furthermore, (m, p) e A(Q((ut)teT')) if and only if p is an
 equilibrium price for the economy S((ut)teTi)-25

 Let T := ((X, r), k) be a parametrization of such that, for every X € X, there
 are continuous and strictly increasing utility functions such that k{X) =
 0((^f)teTi )• It follows that a Cournot-Nash equilibrium of Q ((w, )ř ) is T -essential
 if and only if there exists an equilibrium price of £((uf)t(=Ti) that is stable to the
 perturbations on utility functions determined by T.

 24 Utility functions (,ut)teT' are continuous and take nonnegative values. Since for every t e T'
 the initial endowment w(t) G int(JQ, the budget set correspondence p g A -» Bt(p) is contin-
 uous and has non-empty and compact values. Therefore, Berge 's Maximum Theorem [see Aliprantis
 and Border (2006, Theorem 17.31, page 570)] guarantees that, given (m, p) g K x A and e > 0,
 generalized payoff security holds by choosing a sufficient small neighborhood U of (m, p) and map-
 pings a : T' U {a} -> R and (<pt)tzT''J{a) such that a(a) = Va(<po(m, p), m) - €,(pa(m'p') =
 argmaxp/^ Va{p m '), V(m', p') G U, and for each non-atomic player t g T',a(t ) = ut(<pt(m, p))-€
 and iptim', pf) = argmax^çfl^/) ut(x(t )), V(m', p') g U. The existence of finitely many types of non-
 atomic agents guarantees that there is a common neighborhood U for every t g T' U {a} and also ensures
 that for every (m', p') g ř/, the map / G T' -* ( a(t ), <pt(m'y pr )) is measurable.

 25 Since Ģ((ut)teTļ ) € it has a non-empty set of Cournot-Nash equilibria. As functions {ut)teT' take

 nonnegative values and are strictly increasing, (m, p) g Á(Ç((ut)teTi )) if and only if for some īGf1
 we have that

 (i) There exists a full measure set T[ c 71 such that vt(x(t),p) = ut(x(t )) =
 ma xx(t)eB,Çp) M*(0), Vř G Tļ.

 (ii) p » 0 and ~p(x(t) - w(t )) = 0, Vř g TĻ
 (iii) m = fTi x{t)dß = fTļ w(t)dß.

 Thus, (m, p) G il(^((uf)re7i )) if and only if there exists x g such that (p, x) is an equilibrium for
 £(("i)f€7ļ)-
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 498 S. Correa, J. P. Torres-Martínez

 It follows from Theorem 5 that the set of parameters X e Xfor which all competitive

 equilibrium prices of £((uf)teTl ) are stable to perturbations generated by T is a dense
 residual subset of X. Therefore, competitive equilibria are generically stable when
 perturbations are determined by continuous parametrizations that preserve both the
 continuity and the strict monotonicity of individuals' preferences.

 9 Concluding remarks

 In this paper, we use the stability theory of fixed points developed by Fort (1950)
 and Jiang (1962) to address the essential stability of Cournot-Nash equilibria in large
 generalized games.
 We guarantee that essential stability is a generic property in the space of continuous

 large generalized games. Essential equilibria are still generic when large generalized
 games are generalized payoff secure and upper semicontinuous, provided that only
 payoff perturbations be allowed. Also, all games have essential subsets of the set of
 equilibria, which varies continuously.
 Our results are compatible with general types of perturbations on the characteristics

 of generalized games. Indeed, stability properties still hold when (i) admissible per-
 turbations can be captured by a continuous parametrization of the set of generalized
 games; and (ii) the set of parameters constitutes a complete metric space.

 10 Appendix

 Lemma 1 The set of messages M is non-empty and compact.

 Proof Since t e T' -» Kt is measurable, from Aliprantis and Border (2006, Lemma
 18.2, and Theorem 18.6), we know that this correspondence has an A x B(K)-
 measurable graph. It follows from Aumann's Selection Theorem [see Aliprantis and
 Border (2006, Theorem 18.26, page 608)] that there exists an ^-measurable function
 g : T' K such that, g(t) e Kt,Vt e T'. Hence, the compactness of T' and
 K and the continuity of ti guarantee that the map t -* H(t, g(t)) is bounded and

 measurable. Therefore, M is non-empty. ^
 Since H is continuous, /x is a finite measure, and the sets T' and K are compact,

 the correspondence t e T' -» H(t , K) is integrable bounded and has closed values.
 Thus, as M = fTļ H(t, K)dļi , it follows from Aumann (1965, Theorem 4) that M is
 compact. □

 Let us define some notations. Given a metric space (5, d ), consider the sets

 A(S) = {K c 5 : K is non-empty and compact},

 AC(S) = (Cç A(S) : C is convex}.
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 Essential equilibria of large generalized games 499

 Denote by dn the Hausdorff metric induced by the metric of S. If S is compact,
 then (A (S), dfí) is a complete metric space. Also, when S is compact and convex,
 (AC(S), dfí) is complete.26
 Given a set X, let U(X) be the collection of bounded functions u : X R

 endowed with the sup norm topology, i.e., the topology determined by the metric
 d(uu u2) = supxeX 'u'(x) - u2(x)'.

 Proof of Proposition 1 Let {GnineN, with Qn = Gn{{KnJì rnJiUn,t)teT^ r2), be a
 Cauchy sequence on (G, p). It follows from definition of G and p that for any
 non-atomic player t € 71, {KnJ}n€ ^ is a Cauchy sequence on (A(ř),d//). Also,
 for any atomic playeras e Ti , is a Cauchy sequence on (Ac(Ks),dn,s).
 Hence, there are sets {Kt}tç.T'UT2 such that (i) (Kt, ~KS) e A(K) x AC(KS), V^s-) e
 T' x 72; and (ii) for any (t,s) € T' x 72, we have that lim^+ood//^,,, ATř) =
 lim^-^-i-oQ dH^s(Kn %s , =0. ^

 The definition of the metric p ensures that, for any t e T' and (m, a) e M ^ x F1,
 the sequence a)}ne^ c A(K) is Cauchy and, therefore, there exists a set
 Kt(m , a) € A(iO such that rf# (Tw,/(m, ¿0» £ř(m, a)) converges to zero as n goes to
 infinity. Let r t : M x f2 K be the set- valued mapping defined by rt(m, a) =
 Kt(mta). It follows that correspondences ( rt)teT are continuous.27 By analogous
 arguments, we can obtain that for any s e 72, there is a continuous correspondence
 rs : M x -» tfy such that, for each (m, a_5) e M x TÍS both Ts(m , a_s) e
 AcíA'.y) and d//,.y(rn„y(m, 0-j), 7^(w, tf-^)) converges to zero as n increases.

 ^ Since {0n}«eN is Cauchy on (G, p), there is a bounded function U : T' x K x
 M ^ xF2 -+ R such that, for each t e Tu the sequence {w/z,ř }„eN £ U(K x M x T1)
 converges uniformly to ut := U(t, •) and, therefore, ut is continuous. Analogously,
 for any t e 72, thesequence {unJ}ne^ ç.U(M x T1) converges to some continuous
 functiori ~ūt that is quasi-concave on at.

 Let Q = Q((Kt , rtlut)teTluT2)' It follows from arguments above that limn-^+oo
 p(Gn » G) = 0. Thus, to conclude that (G, p) is complete, it is sufficient to guarantee
 that

 (i) for each (m, a) e M x T1, (í, x) e T'_x K -> ūt(x, m, a) is measurable;
 (ii) for each (m, a) e M x T*-,t eT ' -» rt(m, a) is measurable;

 (iii) the correspondence t € T' -» Kt is measurable.

 Fixj (m, a) e Mx T 2, the definition of p ensures that measurable functions (/, jc) e
 T' x K Unjix, m, a) converge to the mapping (i, x) € T' x K -* ïï/(jt, m, a).

 26 Since ( S , J) is a compact metric space, it follows from Aliprantis and Border (2006, Theorem 3.85-(3)
 and Theorem 3.88-(2), pages 1 16 and 119, respectively) that A (5) is a complete metric space under the
 Hausdorff distance induced by d. When 5 is a compact subset of a normed vector space, {AC(S), dfj)
 remains a complete metric space, since the Hausdorff limit of a sequence of compact convex sets is still a
 compact convex set.

 27 Since M x F*- is compact and (A(K), d h) is complete, for every t g T' , the continuity of the correspon-
 dence rt follows from the completeness of the space of continuous functions v : M x T1 -► A(K) under
 the uniform metric induced by the Haussdorf distance. Indeed, any correspondence r : M x T2, - » K
 with non-empty and compact values can be identified with the function Bp ' M x T1 ->► A(K) given by
 Bpim, a) = r(m, a), in such form that r is continuous if and only if Bp is continuous [see Aliprantis
 and Border (2006, Lemma 3.97 and Theorem 17.15, pages 124 and 563)].

 Ô Springer

This content downloaded from 
�������������67.86.125.187 on Mon, 19 Oct 2020 16:23:49 UTC������������� 

All use subject to https://about.jstor.org/terms



 500 S. Correa, J. P. Torres-Martínez

 Since ( T' x K, A x B(K)) is a measurable space, item (i) holds [see Aliprantis
 and Border (2006, Lemma 4.29, page 142)]. Furthermore, since for every n e N
 the correspondence t € T' -» rnJ(m, a ) is measurable, it follows from Aliprantis

 andjîorder (2006, Theorem 18.10, page 598) that the function ®n,(m,a ) : T' - ►
 A(K) defined by ) = rn,t(m , a) is Borei measurable. Also,jthe sequence
 {@«,(m,a)}neN converges to ©(m,a) : T' -► A(K), where <9(m,a)(i) = rt(m,a). By
 Aliprantis and Border (2006, Lemma 4.29), 0(m,a) is a Borei measurable function.
 Thus, t € T' -» Tt(m, a) is measurable [see Aliprantis and Border (2006, Theorem
 18.10)]. By analogous arguments, we obtain item (iii). a

 Proof of Theorem 1 The proof is a direct consequence of the following steps.

 Step 1. A : G -» M x ÍF2 is upper hemicontinuous with compact values.
 Since M x J3 is compact and non-empty, we only need to prove that Graph (/I)
 is closed, where Graph(yl) := {(Q, (m, a)) e G x M x T2 : (m, a) e A(Ç)}. Let
 {(Gn, (w«. a„)))MSN C_ Graph (vi) be a sequence converging to (G, (m,õ)) €
 G xMx T1, where G = G((Kt, rt,ūt)t&Ti'jTi) and, for every n e N, Gn =
 G„((K?,rtn,u?)teTluT2).

 We aim toensure that (7ñ, õ) 6 A(G)- Since for any n e N, ( mn,a„ ) e A(Gn)> there
 exists fn 6 such that (i) the function g„ : T' Rm given by gn (0 = H (t, f„(t ))
 is measurable and m„ = m ( /„ ) ; and (ii) for almost all t e T' both /„(f) € rtn(mn,a„)
 and

 u"(fn(t), mn, an) = max unt(,x,m„,an).
 xe.rp(mn,an)

 Claim A There exists f e ¿F1 such that m = fr¡ H(t, f(t))d¡i.

 Proof Since H is continuous, T' is compact and {fnine N C Tx, it follows that the
 sequence {g«}„6N is uniformly integrable [see Hildenbrand (1974, page 52)]. In addi-

 tion, {fr gn(t)dfi}neN C Rw converges to m as n goes to infinity , and therefore,
 the multidimensional version of Fatou's Lemma [see Hildenbrand (1974, page 69)]
 guarantees that there is g : T' -*■ Rm integrable such that,28

 (1) m = lim Ļ g„(t)dfi = L g(t)dß;
 n-+ oo 11 1

 (2) there exists a full measure set Ť' ç T' such that, for any t e Ť' ,g(t) € Ls(gn(t)),
 where Ls(gn(t )) is the set of cluster points of {g„(0}„eN-29

 Fix t e fi. Then, there is a subsequence (gnk(t))k converging to g(t). Since
 {fnk(t))kç N í by taking a subsequence if it is necessary, we can ensure that
 there exists f(t) € K such that both fnk(t) - ► f(t) and g(t) = lim H ( t , f„k(t )) =

 k-+oo

 Hit , f(t)) hold.

 28 Although maps can take negative values, they are uniformly bounded from below (since K
 and T' are compact sets, and H is continuous). Thus, as T' has finite Lebesgue measure, we can apply the
 Fatou's Lemma.

 29 In other words, for any t € Ť' , there is at least one subsequence of {gniOinsN converging to git).
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 Essential equilibria of large generalized games 50 1

 Let / : T' -> K be a function such that

 1(t)G' /W {/«}, ifíeři,
 /W ļ r tÇm,ã), if t € T'Ť'.

 Then, it follows that

 m = lim mn = lim / g„(t)dß= / g(t)dß= / H(t,J(t))dß, n-+oo n-+ooJ J J
 T' T¡ Ti

 where the last equality follows from the fact that T' 'T' has zero measure. □

 Claim B For almost all t e 71 , /(f) e r,(m, a). In addition, for any t e Ti, āt e
 F, (m, ā-t).

 Proof Following the notation of the proof of the previous claim, fu t e f| and let
 { fnk (OJteN be the sequence converging to f(t) and that was obtained in the previous
 claim. We know that, for any k € N, fnk(t) 6 r"k (m„k, a„k). Therefore,

 d(f(t), T i (m, Ā» < d(f(t), fnk (t)) + dfí(r"k(mn/t,a„t), Tt(m„k,a„k ))

 +dH (Ft (m„k ,a»k), T, (m, ā))

 <d(f(t), f„k(t )) + p(Gnk, Q) + dH(rt{mnk,ank), Tt(m, ä)),

 where d denotes the metric of the compact metric space K. Since rt is continuous,
 by taking the limit as k goes to infinity, we obtain the first property.

 On the other hand, for any (i, n) e T2 x N, anJ e rtn(mn , an-t), which implies
 that

 dÇãt , rř(m,a_ř)) < dtÇât,an,t) + dHj(rtn(mn,an ,-ř), Tt(mnian _,))

 +dfíj (Tt(mni an-t), rř(m, ã-t))

 < dt(ßt> anj) + p(Gn , Q) + dHArt(mni an-t ), Ã(m, ã_,)),

 where dt denotes the metric of Kt. Taking the limit as n goes to infinity, we obtain the
 result. □

 Claim C The following properties hold :

 (i) For almost all t e 71, f(t ) € ^rg^^xx£Tt(m,ã) wř(jc,m, ã).
 (ii) For any t e T2tãt e argmaxx^Tt^5_t)ūt(&i,x,ā-t).

 Proof (i) Given t e Ť 1, we have that

 d h ( rtHk (mnk , ank ) , rt (m, a)) < p (Qnk , Q) + d h (r t ( mnk , a«* ) , Tt (m , õ)) .

 Then, rtnk(mnk , aWjt) - rř(m, a). Since u"k converges uniformly to wř, it follows
 from Yu (1999, Lemma 2.5) and Aubin (1982, Theorem 3, page 70) that
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 502 S. Correa, J. P. Torres-Martínez

 u"k(fnk(t),m„k,a, lk)= max untk{x,m„k,ank) - max ūt(x,m,ā)
 xertnk(mnk,ank) xeT ,(m,a)

 On the other hand,

 I"?* ( fnk it) , m„k , a„k ) - ūt (f(t) , m, ā) '

 < p(Gnk,G) + 'ūt(fnk(t),mnk, ank ) -ūt (7(ř), m, õ)|.

 Taking the limit as k goes to infinity, we obtain that u"k(fnk(t),m„k,ank) - <•
 w/(/(0» 'w» 5)- Hence, it follows from Claim B that f(t) e argmax ut(x , m, ā).

 xert(m,ÏÏ)

 (ii) Given t e T2, analogous arguments to those made in the previous item ensure that

 dH,t(rtn(mn, an-t), T,(m, ā-,)) < p(Ç„, Q) + , an-t), T,(m, ā_,)),

 which implies that rtn (mn , a^,-/) converges to rt (m , ā-t) as n goes to infinity. Hence,
 Yu (1999, Lemma 2.5) ensures that

 ui¡{mn,an) = max unt{mn, x, an-i) - ► jnax ūt(m, x, ā-t).
 x^rtn(mn,anļ-t) xertĢn,ā-t)

 Since lim ur}(mnìan) =ūt(m,'a),30āt e argmax ~ūt(m, jc, ā-t). □
 «->4-00 -= t

 xertÇm,a-t) t

 It follows from Claims A and C that (m, ã) e A(Q). Thus, we ensure that A is an
 upper hemicontinuous correspondence with compact values.

 Step 2. There is a dense residual set Q c G' where A is lower hemicontinuous.
 Since G' is a closed subset of G, it follows that (G', p) is a complete metric space
 and, therefore, it is a Baire space. Since the correspondence A is non-empty, compact-
 valued, and upper hemicontinuous, it follows from Lemmas 5 and 6 in Carbonell-
 Nicolau (2010) [see also Fort (1949) and Jiang (1962)] that there exists a dense resid-
 ual subset Q of G' in which A is lower hemicontinuous.

 Step 3. If Q e Gf is a point of lower hemicontinuity of A , then Q is essential with
 respect to G'.
 Fix(/*,a*) e CN(C/). Then, for any open neighborhood O c Afx^of (m(/*), a*),
 we have A(Q) D O ^0, and therefore, by the lower hemicontinuity, we have that

 {<7' € G' : A(Qf) fi O 0} contains a neighborhood of Q , that is, for some € > 0
 and for any Q ' e G' such that p{G' Q) < e, we have A{Q') fl O ļ=> 0. Hence, all
 Cournot-Nash equilibria of Q are essential with respect to G'.

 30 It is a direct consequence of the fact that, for any n € N, we have

 I«? (mn >an) -ût (m , ā) | < p (Qn , G) + 'ūt (mn,an) -ūt(m,a) | .
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 Essential equilibria of large generalized games 503

 It follows from Steps 2 and 3 that any game in Q is essential.
 Finally, suppose that for some Q e G' the set A(Q) is a singleton. Then, the upper

 hemi-continuity of A guarantees that it is continuous at Q. Finally, Step 3 implies that
 Q is an essential generalized game with respect to G'. □

 Proof of Theorem 2 (i) Existence of a minimal essential set.
 Fix G € G'. Let S be the family of essential subsets of A(Q) with respect to G' ordered
 by set inclusion. Since A is upper hemicontinuous, A(Q) e S and, hence, 5^0.
 As any essential set is non-empty and compact, each totally ordered subset of S has a
 lower bound. By Zorn's Lemma, S has a minimal element and, by definition, it is an
 essential set of A(Q) with respect to G'.
 (ii) If there are connected essential sets , then there are essential components.
 Suppose that there is a connected essential set of A(Q) with respect to G', denoted
 by c(Q). Since c(G) is non-empty, fix (m, a) e c(Ç) and consider the set A(fiZ)(G)
 defined as the union of all connected subsets of A(Q) that contains (m, a). By defini-

 tion, A (^a) (G) is a component of A (G) . As the closure of a connected set is connected
 and A(G) is compact, it follows that A(ñ$)(G) is compact. Hence, the essentiality of
 c(G) Q A (m, a) (G) with respect to G' ensures that the component A^^iG) is also an
 essential subset of A(G) with respect to G'.
 (iii) Connectedness of minimal essential sets in normed spaces.
 Suppose that K is a convex subset of a normed space and it is equipped with a metric
 induced by a norm. Fix a minimal essential set of A(G) with respect to G', denoted
 by m(G)> Suppose, by contradiction, that m(G) is disconnected.

 ClaimA There are open sets U',Ui c M x T1 such that m(G) C U' U U 2 and
 T7inř72 = 0.

 Proof Since m(G) is disconnected, there are closed and non-empty subsets A', A2Ç
 A(G) such that A' O A2 = 0 and m(G) = A' U A2. Since m(G) is minimal, neither
 Ai nor Á2 are essential with respect to G'. Hence, for each i e {1, 2}, there exists
 an open set U¡ such that C U i and for all € > 0, there exists Q' e G7 such that
 both pjß, Gl€) < € and A(Gl€) fi £7/ = 0. Since A¡ is compact, we can assume that
 U' n U2 = 0. □

 Claim B There are large generalized games G' , G2 € Gr such that

 A(Gi) n Ui = 0 a A(Gi) n Uj ¿ 0, V/, j e {l, 2} : i ¿ j.

 In addition, there is a continuous map G : M x T1 G such that , for every
 (m, a) e M x F2,

 A(G(m , à)) fi (Ui U U2) / 0, (G (m, a) = Gi *=> (m, a) e 17/), V/ g {1, 2}.

 Proof As m(G) is essential with respect to G', there exists v > 0 such that for every
 Gf € G' with p(G , Gf) < v, we have A{G') fi (U' U Ui) ^ 0. Following the notation
 of the previous claim, for each ¿€{1,2}, set Gi = GLy Hence, for i jL j , we obtain
 A(Gi)r'Uj ¿0.
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 504 S. Correa, J. P. Torres-Martínez

 Let G : M x T1 -* G be the function31

 G(m, a) = Mm, à)G' + (1 - X(m, a))</2, V(m, a) e M x T2,

 where k : M x T1 -> [0, 1] is the continuous function given by,

 w x rf((m,a),i 72)
 Mm, w a) x =

 d((m,a),Ui) + d«m,a),U2)

 By construction, for each i € {1, 2}, G (m, a) = C/¿ if and only if (m, a) G ř/,.

 Since metric spaces £ and {Kt}teT2 contained in normed vectorial spaces and
 their metrics are induced by norms, for any (m, a) € M x T1, we can ensure that
 G(m, a) is well defined and

 p(G(m, a), Qi) = p (A.(m, a)£i + (1 - Mm, a))Ö2, À(m, a)(?i + (1 - Mm, a))É?i)

 = Mm, a)p(ßif öl) + d - Mm, fl))p(fc, öl)

 < /o(^2,öi) < p(G2,G) + P(Q, G') < -,

 which implies that p(Q , G(m, a)) < p(ö, C/i) 4- p(Si. G(m, a)) < v. Hence, for
 each (m, a) e M x T1, A(G(m , a)) fi (t/i U í/2) # 0. □

 Given a large generalized game G € G, let (Pç; : M x T2 -» M x be the
 correspondence defined by <Pç(my a) = (í2^(m, a), (Bf (m, a-ř))řer2)» where

 ßö(m, a) := j Hit , /(0)dM : ff (•, /(•)) is integrable a /(f) e Bf (m, a), V» 6 71 ;
 ,r'

 argmax wř(jtř,m,a), Ví € Ti;
 x,€r,(m,a)

 := argmax wř(jeř, m, a_ř), Vf € 72.
 xtçr,(m,a-t)

 We affirm that is upper hemicontinuous and has non-empty, compact, and
 convex values. Note that, Berge's Maximum Theorem [see Aliprantis and Border
 (2006, Theorem 17.31, page 570)] guarantees that for any t e T' U 72, the cor-
 respondence ßf is upper hemicontinuous and has non-empty and compact values.
 Also, as atomic players have convex strategy sets and quasi-concave payoff func-

 tions, correspondences (Bf)t€T2 have convex values. Hence, we want to prove that

 qG(-) = fTļ H(t , B?(-))dļi is upper hemicontinuous and has non-empty, compact,
 and convex values. Aumann (1965, Theorem 1) guarantees that has convex val-
 ues. Fix (m,a) e M x F2. Since t e T' -» /~}(m,a) is measurable, it follows

 31 The function G is well defined, because K and Kt, where ř € r2, are convex subsets of normed spaces
 with metrics induced by norms (see footnote 15).
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 Essential equilibria of large generalized games 505

 from Aliprantis and Border (2006, Lemma 18.2, page 593) that t e T' -» 7ļ(m, a)
 is weakly measurable. The Measurable Maximum Theorem (Aliprantis and Border

 (2006, Theorem 18.19, page 605)) implies that t e T' -» H(t, ßf (m, a)) has a mea-
 surable selector. Since H is continuous, the compactness of T' and K guarantees that

 t € T' -+ H(t , ßf(m,a)) is bounded and, therefore, its measurable selectors are
 integrable. We conclude that Í2^(m, a) is non-empty. Since T' has finite measure and

 t e T' -» H (t, ßf (m, a)) is bounded and has closed values, it follows from Aumann
 (1965, Theorem 4) that Í2^(m, a) is compact. Finally, as H is continuous, K is com-

 pact, and for every t e T' the correspondence (m, a) -» 2?f(m, a) has closed graph;

 it follows that (m, a) H(t, ßf(m% a)) is upper hemicontinuous for each t e 71.
 Thus, it follows from Aumann (1965, Corollary 5.2) that is upper hemicontinuous.

 Therefore, Kakutani's Fixed Point Theorem implies that the set of fixed points of &g
 is non-empty and compact. Note that (/* , a*) is a Cournot-Nash equilibrium of Q if and

 only if (m*, a*) e M x F1 is a fixed point of where m* = JT H(t , f*(t))dß.32

 Claim C There exists (m, a) e U' such that (m, a) e A (G (m , Zi)).

 Proof Given a compact, convex, and non-empty set Ã' c U i, let © : Ã' x
 Ai -» Ai x Ai be the correspondence defined by <9 ((mi, a'), (mi, ai)) =

 (&G(mi,ai)(in2> ai) H Ãi^ x {(mi, ai)}. If the set-valued map 0' : Ã' x Ã' -» Ã'
 given by ®i((mi, ai), (m2, ai)) = &G{mua')(m2> ai) H Ã' has closed graph, then
 & is upper hemicontinuous and has non-empty, compact, and convex values. Thus,
 applying Kakutani's Fixed Point Theorem, we could find (m,ã) e Ã' c U' such that
 (m, ã) e A(G(m, a)).
 Therefore, to prove the claim, it is sufficient to ensure that 0' has closed graph. Fix

 a sequence {(z" , z%, (mn , an))}ne n C Graph((9i) that converges to (z', Ž2, (m, à)).
 We aim to guarantee that (m, ã) e zi)>
 For convenience of notations, assume that Gi = Qí((K¡9 r/, uit)t£TìuT2)> V/ €

 {1,2}. Given t e 7i, let yt : (M x ^ř) x Ãi -» Kt be the correspondence defined
 by

 Yt((m , a-/), z) = argmax v/(*, (m, a_,), z),

 where33

 ^((m, a_ř), z) - k(z)rtl(m , a_ř) + (1 - À(z))r,2(m, a_ř),

 uř(*, (m, a-t ), z) = A,(z)w/ (m, a_,) + (1 - k(z))uj(my jc, a_,).

 It follows that yt is upper hemicountinuous with non-empty and compact val-
 ues. Therefore, the correspondence y : (M x ^2) x Ā' -» nteT2Kt given by

 32 These properties are the core of the proof of equilibrium existence of Riascos and Torres-Martinez
 (2013).

 33 Remember that k (z) = -
 d(z,Ui)+d(z,U2)
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 506 S. Correa, J. P. Torres-Martínez

 y((m, a ), zi) = HteT2 a-t)> z) is upper hemicontinuous with compact and
 non-empty values. In particular, y has closed graph.

 Since {(zi , zļ> <*n)}n€ N C Graph(y), it follows that a e y(ži, zi)- ^
 On the other hand, for each ne N, there exists fn : T' -> K such that,

 m„ = fTļ H{t, fn(t))dĻi and, for almost all t e T',fn(t) e &(z", z%) :=
 argmaXjj.g^^« i;ř(jc, z" , zīļ), where we use notations analogous to those described
 above. Note that, for all t e T' , £ř, it has a closed graph.
 Since mn -+ m , analogous arguments to those made in Theorem 1 (Claim A)

 ensure that, applying the multidimensional Fatou's Lemma [see Hildenbrand (1974,
 page 69)], there exists a full measure set Ť' c T' and a function / : T' -+ K such
 that,

 (i) For any t e 71, there is a subsequence of {fniOinzN that converges to f(t)'
 (ii) For any t e Ti'ŤuJ(t) e ķt(Ž',Z2)ģ,

 (iii) ih = fTļ H(t, f(t))dß.

 Since for any t e Ť' the correspondence %t is closed, it follows from item (i) that
 /(0 € Z2)' Items (ii) and (iii) jointly with the fact that a e y(i',Z2) imply that
 (m, a) e Siizuzi). □

 Since (m, ã) e U'9 it follows that G(m, a) = Q'. Hence, Claim B implies that
 A(G(m, ã)) HU ' =0. This is a contradiction, since both (m, a) e U' and (m, a) e
 A(G(m, ã)). Therefore, the minimal essential set m(Q) is connected.

 (iv) If A(Q) is finite, then Q has at least one essential equilibrium.
 Suppose that K is a convex subset of a normed space with a metric induced by a
 norm. It follows from (iii) that for every Q e G' there is a minimal essential set of
 A(Q) that is connected. On the other hand, as A(Q) is finite, minimal essential sets
 are singletons. □

 Proof of Theorem 4 Given X eX, the T -essential subsets of A(k(X)) are stable.
 It follows from Definition 4 that it suffices to guarantee that minimal essential sets
 are stable in the sense of Definition 8. Let Am(T , X) be the collection of minimal
 T-essential subsets of A(k(X)).
 By contradiction, assume that there is A e Am(T , X) and eo > 0 such that, for
 any S > 0, there is X$ e X with r(X , X¿) < S and A! n B[e 0, A]c ^ 0, VA' e
 Am(T , Xs ), where B[e 0, A]c := ( M x A]. Since A is T-essential, there
 is ¿o > 0 such that, for any X' e X with r(X , Xf) < ¿o» we have that A(/c(A")) fl
 C(e 0, A) j=- 0, where C(^o, A) = {(m,a) e M xÍF2 : inf a((m,a), (m', a')) <

 (m',a')eA

 €}. It follows that A(k(Xs0)) H Ble 0, A] is a non-empty and closed set contained in
 B[€ 0, A], Therefore, A(k(Xs0)) H Z?|>o, M is not an essential subset of A(k(X&0)).

 Hence, there exists e' >0 such that, for any ne N, there is Xn e X
 with r(XsQ1 Xn) < ^ and C(e 1, A(k(X$0)) fl B[€ 0, A]) fl A(ic(Xn)) = 0, where
 S i > 0 is chosen in such form that, for any X" e X, if t(Xs0, X") < 8',
 then t(X, X/f ) < <$0. The last property ensures that r(X , Xn) < ¿o for any
 ne N, which implies that A(ic(Xn)) fl C(e 0, A) is non-empty. Take a sequence
 {{mn, an)}n€N such that ( mn,an ) 6 A(ic(Xn)) n C(éo, A), Vn e N. Without the
 loss of generality, there is (mo,tfo) € A] such that ( mn,an ) (mo,ao).
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 Essential equilibria of large generalized games 507

 The upper hemicontinuity of (A o k) ensures that (mo, 00) € A(/c(A¿0)), that is»
 (mo,ao) € A(k(Xs0)) fl B[eo, A]. However, as for any n e N, we have that
 ( mn,an ) € A(je(Xn)) and C(e 1, A(k(Xsq)) n Ä[*o, A]) fl A(K(Xn)) = 0, it fol-
 lows that ( mn,an ) £ C(^i, yi(Ac(A^0)) fi B|>o, A]), Vn g N. Thus, (mo, 00) S?
 A(/c(A¿0)) fi £[>0, A], which is a contradiction.
 If Xis a convex subset of a normed space and x is induced by a norm, then for each

 X € X,jhe T -essential components of A(k{X)) are strongly stable.
 Since M c is compact and Kt , with t e T2, are compact subsets of normed
 spaces with metrics induced by norms, it follows that A(k(X)) ç. M xT2 is a locally
 connected and compact space. Therefore, A(jc(X) as a finite number of connected
 components.34 For this reason, given a T-essential component A c A(tc(X)), there
 exists ix > 0 such that B[ jt, A] fl B[jt, A(k(A0)'A] = 0.
 Furthermore, it follows from the proof of Theorem 2(i) that there is Am e

 Am(T , X) such that Am c A. By the previous item, for each € > 0, there is ¿1 >0

 such that, given X' e X with r(X , X') < 8' , there exists A'm e Am (T, X ') for which
 Afm ç B[€ , Am] c B[e , A]. Since X is a convex subset of a normed space and r
 is induced by a norm, it follows from Theorem 3(iv) that minimal essential sets are

 connected, and therefore, following analogous arguments to those made in the proof
 of Theorem 2(ii), we can ensure that for any X' e X with r(X , Xf) < 8' , there is an
 essential component A' e AC(T , Xf) which contains A'm , where AC(T, A") is the set
 of T-essential components of A{k{X')). We want to prove that, for X' closely enough
 to X,A' ç B[€ , A].

 Since the correspondence A o k is upper hemicontinuous, there is 62 > 0 such that
 for any X' e X with r(X , Xf) < 82 we have that A(k(X')) C C(e , ^(/c(A))) c
 £[€,A]U£[É,^(/C(A))'A].

 Note that A(k(X))'A is a compact set.35 Let <5 = min{<$o, 8'] and fix ^ € X
 with x(X, X') < (5. If A' H B[€, A]c ¿ 0, then A' fl B[t, A(k(X))'A] ¿ 0 and A' n
 B[€ , A] ^ 0. In addition, when é < tt, it follows that B[e, A] fļ B[e, 2l(jc(<¥))'A] =
 0. Since A and A(k(X))'A are compact sets, both B[e, A] and 2?[e, A(k(X))'A] are
 closed. Thus, we obtain a partition of the connected set A' into two non-empty and
 disjoint closed sets, A' fl B[€, yi(/c(/ť))' A] and A' fl B[ç, A], which is a contradiction.
 Therefore, for any ^eX with r(X , X') < 8 , we have that A' c B[t, A]. □

 Lemma 2 Leí Q = Q((Kt, r >, M/)ř€riur2) ^ « generalized payoff secure and upper
 semicontinuous game. Then , C/ satisfies continuous security.

 Proof Given (m,a) £ A(£), generalized payoff security guarantees that, for any
 € > 0, there exists ( U€ , (<pf )řeriur2' a<F) satisfying item (i) of Definition 10. Thus, to
 guarantee that Q is continuous secure, it is sufficient to prove that ( U€ , a€ ) satisfies

 34 The connected components of a locally connected and compact space determine a partition of it into
 disjoint open sets. By compactness, this partition has finitely many elements [see Berge (1997, pages
 98-100)].

 Indeed, since (A(k( X)) 'A) c A(k {X)), it is sufficient to ensure that it is closed. Let {(mn, an)}nef$ c
 (A(k(X))'A) be a sequence that converges to (mo, ūq) € M x For any n e N, (mn,an) e A(k(X))
 and (mn,an) £ A. Thus, (mo, ao) € A(/c(X)). Furthermore, if (mo, ciq) g A , then for n large enough
 ( mnyan ) € B[ 7T, A], which is a contradiction with B'tt, yl(*:(;ť))'y4]ri2Í[7r, A] = 0. Therefore, (mo, ao) €
 A(k(X))'A.
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 508 S. Correa, J. P. Torres-Martínez

 Definition 10 (ii) for some e > 0. Suppose, by contradiction, that for any n e N, there

 is (fn, in) e F1 X T1 satisfying,

 (a) (m(fn),a„) euK
 (b) fn(t ) € r,(m(/„), a„) for almost all t e Tu
 (c) a„,t € rt(m(fn), a„-, ) for all t e T2,

 (d) for almost all f € 71, u,(fn(t), m(fn), a„) > a» (i),

 (e) for any t e 7*2, ut(m(fn), a„tt, a„-t) > a* ( t ).

 Since we can assume that Ç]nU* = {(m, a)}, it follows from (a) that
 («»(/„), an) -*n (m, a). Conditions (b)-(c) guarantee, by using analogous arguments
 to those made in the proof of Theorem 1 (Claim A), that we can find a strategy profile

 / € ^Fl((Ki)t€T¡) such that m = m(f) and there is a full measure set T[ ç T' such
 that f(t) € LsifniO), Vi e T{.
 In addition, as correspondences of admissible strategies have closed graph, it fol-

 lows that (i) for almost all t e 71, fit) e /ļ(m(/), a); (ii) for all k e Tļ,ak e
 rkimif),a-k).
 Hence, as (m, a) AiQ), there is a non-negligible set of agents that are sub-

 optimizing, i.e., there exists <5 > 0 such that either for a positive measure set T{' ç T',

 utifit),m,a) + 8 < sup utix,m,a), Vt € T",
 xert(m,a)

 or for some t e 72,

 ut(m,at,a-t) + 8 < sup ut(mtx,a-t).
 xert(m,a-t)

 This last condition implies that

 ^Utim,at,a-t) + 8 < ^ sup u,im,x,a-t).
 teTi teT2 *6/i(m,a-,)

 Since Q is upper semicontinuous and (m(/„), an) - im, a), it follows from the
 definition of / that for n € N large enough, we have that either for all t e T[ fi T",

 utif„it),mifn),an)+ 0.58 < sup utix,m,a), (1)
 xert(m,a)

 or

 y] u,imif„),a„>t,an-,)+ 0.58 sup u,im,x,a-t).
 teT2 teTi x€rt(m,a-t)

 The later inequality implies that there is t e T2 such that

 0 5 8
 utimif„),a„,t,a„-,)+ < sup utim,x,a-t). (2)

 ^*2 X ert(m,a-t)
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 Essential equilibria of large generalized games 509

 On the other hand, it follows from conditions (d)-(e) above and Definition 11 (ii)
 that for n e N large enough, there exists Tn c 71 with ļi(Tn) > ļx{T') - i such that,
 for any t e Tn,

 ut(fn(t ), m(/„), an) > sup m , a) - -,
 X ert(m,a) n

 and for every atomic player t e 72,

 (m(/„), anj, an-t) > sup wř(m, x, a-t) -
 x€rt(m,a-t) n

 Thus, Yux^ut(fn(f),m(fn),an) > supx€r^m a) ut(x, m, a) for almost all non-
 atomic player t e 71. Also, for each atomic player t e 72, we have that

 an,t> an-t) > sup xzrt(m,a-t)ut(m> a-t)> Hence, taking the lower
 limit in (1) and (2), we obtain a contradiction. □

 Proposition 2 (G p) is a complete metric space.

 Proof Since (Kt, rt)t^T''jTi does not change, (G¿, p)can be considered as a subset

 of the space of bounded functions B := U(T' xKxMx f2) x Ylt€T2 UtiM x T2),
 where for any t e 72, the set Ut(M x T2) is the collection of bounded functions
 (m, at, a-t) -► ut(m,at , a-t) which are quasi-concave on at. Note that ( B , p) is a
 complete metric space and, therefore, it is sufficient to ensure that Gj is a closed subset
 of B.

 Fix a sequence {pnìnzN C G«/, with Qn = Gn(W¡)tsTi'JT2)Jw any n € N, which
 converges to Q = ^((Mř)ř€riur2) € ß. We want to prove that Q e G¿.
 Claim. Q is generalized payoff secure.
 Given (m,a) e M xf2 and e > 0, generalized payoff security of Qn at ((m, a), 0.5 e)
 implies that there exists (Un, (<p?)teTiUT2i °tn) satisfying the requirements of Defini-
 tion 11.

 Thus, for n large enough, for almost all t e 71, for all k e 72, and for every
 ( m', a') e Un , we have that,

 ut(x,m'af) > unt(x,m! ,a') - 0.25 € > an(O-0.25€, Vjc e (p"(mr ,a')'

 ūk(m' x , alř) > unk(mf.x , - 0.25 € > «"(/e) - 0.25 é, Vjc € <p%(m' a').

 Furthermore, Definition 1 l(ii) ensures that, for n large enough,

 (an(k) - 0.25 €) + € = (a" (it) + 0.5c) + 0, 25 6

 > sup unt(m, x,a-k) + 0.25 6
 x<Ert(m,a-k)

 > sup ut(m,x,a-k), Vi e 72.
 xert(m,a-k )

 ß 1 1 e Ti : (an (f) - 0.25 e) + e > sup «,(*, m, a) > /¿(7Ì) - 0.5 e.
 [ xert(m,a )
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 510 S. Correa, J. P. Torres-Martínez

 Therefore, taking n large enough and choosing (£/", (<p1)teT''JTi> - 0.25 e), we
 ensure that Q is generalized payoff secure at ((m, a), €). □

 It is a direct consequence of Carbonell-Nicolau (2010, Lemma 1, page 425) that Q
 is upper semicontinuous and atomic players' objective functions (ūt)t£T2 816 Quasi-
 concave. In addition, the same arguments made in the proof of Proposition 1 guarantee
 that,forevery (m, a) e M X.F2, the map (í, jc) e T'xK -> wř(jc, m, a) is measurable.
 This concludes the proof. □

 Proof of Theorem 5 Since (G¿ , p) is complete, it follows from the proofs of Theorems
 1-4 that it is sufficient to ensure that A still has a closed graph when its domain is
 extended to

 Let {(SnÁmn,an)))n^ c Graph^) such that (ft,, (mn, an)) -* (<?, (m,ā)),
 where Qn =_Gn((uļ)teTiUT2) and Q = G((ūt)tzT''JT2) e We want to prove that

 Since (mn, an) e A(Gn)> there is fn e such that

 (a) the function gn : T' -> Rm given by gn(t ) = H (f, /n(0) is measurable and
 = m(fn)'

 (b) for almost all t e T' both fn(t) e rt(mn , an ) and

 unt(fn(t)imn,an)= sup uļ(x9mn,an).
 xert(mn,an)

 Claim A There exists f e Tx such that m = fTļ H(t , f(t))dļi.

 Proof By analogous arguments to those in the proof of Theorem 1 (Claim A), we
 can find a strategy profile / e Tx and a full measure set T* c T' such that m =
 m(f)J{t)eLs{fn(t))^teT *. □

 Claim B For almost all t e T', f(t) € 71 (m, a). In addition, for any t e Ti,at e
 rt(m, a-t).

 Proof It follows from the proof of Claim A that there is a full measure set T* ç 71 such

 that f(t) e Ls(fn(t))y Vi e T*. Thus, the closed graph property of correspondences

 of admissible strategies ensures that (i) for all t e T*, f(t) e rtĢn , a)' and (ii) for
 all t e Ti, ãt € 7ļ(m, ã-t). □

 Claim C The following properties hold

 (i) For almost all t e T' , f(t) e argmax^p^-^ ut(x,m,a).
 (ii) For any t e Ti,at e argmaxxeFt(ñ7i_t)út(jñ, x,ã-t).

 Proof Suppose that at least one of the properties (i) and (ii)_does not hold, i.e., there is
 a non-negligible set of agents that are suboptimizing. Since G is upper semicontinuous,
 identical arguments to those made in the proof of Lemma 2 to obtain conditions (1)
 and (2) imply that there is £ > 0 such that,36 for n large enough, either

 ut(fn(t'mn,an) + £ < sup ūt{x,m, a), Ví € T** ç Tu
 x&rtÇm,a)
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 Essential equilibria of large generalized games 5 1 1

 where T** is a positive measure set, or there exists t e Tļ such that36

 ūt(mn,an,t,an-,) + H < sup_ ūt(m,x,ā-t).
 xert(jn,a-t )

 Thus, as p{Qn , Q) - 0, for n large enough at least one of the following conditions
 hold:

 u"(fn(t), m„,an) + 0.5£ < sup ūt(x,m,ā), Wt e T* D T**; (3)
 xe.r,Ģn.ā)

 u"(mn,antt,an-,) + 0.5 £ < sup_ ūt(m,x,ā-t). (4)
 x€rt(m,a-t)

 On the other hand, since Q is a generalized payoff secure large game, for every
 € > 0, there exists ( U€ , (^f)f€riur2> a6) satisfying Definition 11. In particular, as
 0 mn , an) ->n (m, a)9 there exists a set T€ ç T' with ß(T€) > ß(T') - € such that,
 for any n large enough, we have (w„, an) e U€ and the following properties hold for
 every (ř, k) e T€ x Ti'

 sup ut(x,mn,an)> sup ut{x,mn,an)
 xert(mn,an ) x&(pf(mn,an)

 >a€(t) > sup īit(xym,a) - € ; (5)
 x

 sup ūk(mn, x,a„-k) > sup uk(mn,x,a„-k )
 xerk(mn,an-ic ) xe<pļ(mn,an-k)

 > a€(k) > sup w*(m, x , ā-k) - €. (6)
 xerk(m,ā-k)

 As objective functions are bounded, the uniform convergence of Qn to Q ensures
 that, for n large enough and for each (t,k) e T * x 72,

 w?(/n(0,/w/î,a„) + € = sup unt{x,mn,an) + €
 xert(mn,a„ )

 > sup ut(x, mn, an)' (7)
 xzT t(mn,an)

 Ąirnn.a^k, + € = sup unk(mfli x , an-k) + e
 xerk(mn,an-k)

 > sup Ukimn.x.a^-k)' (8)
 xerk(mn,a„-k)

 36 Following the notation used in the proof of Lemma 2, we can take £ = .
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 512 S . Correa, J. P. Torres-Martínez

 Therefore, for every € > 0 and for each (í, k) € (T* fi T€) x T%, taking the lower limit
 as n goes to infinity on inequalities (7}-(8) it follows that,

 lim „u?(fn(t),m„,a„) + € > sup ūt(x,m,ā)-e, (9)
 xertQñ,a)

 ļim „uļ(mn,an,k,an-k) + € > sup_ ūk<jn,x,ā-k) - e. (10)
 xerkĢn,a-k)

 Taking the limit as € goes to zero on (9-10) and taking the lower limit as n goes to
 infinity on (3-4), we obtain a contradiction.

 It follows from Claims A and C that (7n, ã) e A(Ç). □
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