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Abstract

This paper proposes a theory of segregation measurement based on the intensity and

social diversity of pairwise interactions. In our framework, societies are described by

a space of locations, a space of social groups, and agents’ distribution across locations

and groups. Locations can be schools in a district, residences in a city, or platforms

such as media outlets where individuals interact or meet. Social groups can be defined

by race, socioeconomic status, political ideology, or any other source of social identity.

We axiomatize measures that can be expressed as a weighted sum across pairs of an

interaction intensity that depends on locations and an interaction value that depends on

social identities. We prove that the index is proportional to the covariance between spatial

and social distances, so that high segregation is associated with a high correlation between

location and social proximity. We use our framework to study two segregation phenomena.

The first one measures socioeconomic segregation in Chilean schools, showing variation

across cities in line with residential segregation and across grades in line with differences

in elementary and high school supply. The second one measures ideological segregation

in media outlets’ consumption, for different media platforms -newspapers, radio, TV- for

28 European countries. We find systematic differences in segregation across countries and

platforms.
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1 Introduction

Segregation in different domains remains a pervasive fact in contemporary societies. The lack

of socioeconomic and racial diversity of interactions in schools and neighborhoods, and the

exposure to like-minded ideological content can hinder a society’s ability to embrace the value of

diversity. Social inequality is often times both a cause and a consequence of residential, school

and cultural segregation. Further, drawing on a long tradition in the social sciences, recent

work in sociology has renewed attention on how barriers across social groups and segregation

remains a fundamental barrier to equal opportunities.1 The resurgence of inequality in local and

global politics and the loss of trust in political and financial elites perceived as detached from

“main street” also points in this direction.2 Some of the most relevant social and technological

recent changes may also contribute to a renewed interest in segregation. Specifically, recent mass

migration waves across the world are often times associated with new segregated communities

in the places of destination. In a different domain, the radical changes in the media landscape

and new forms in which people access to news and information have also been associated with

ideological segregation, a potential driver of the recent political polarization.3 To the extent

that different forms of segregation persist or arise, affecting social cohesion and the ability to

construct a common ground for life in a democratic community, improving our understanding

and measurement of segregation remains essential.

This paper provides a general framework to study segregation in different domains. We aim

to contribute to a long tradition in the measurement of segregation. Our theory’s starting point

is shared by many conceptualizations of this phenomenon: segregation is the lack of interactions

between individuals belonging to different social groups. Our framework considers a society

of individuals that can differ in two dimensions, a social type that defines their social group,

and a location (or a set of locations) they occupy. Depending on the application, social types

can be race, socioeconomic status, ethnicity, nationality, religion, ideology, or any mix of social

characteristics that define the groups we are interested in. An individual’s location could be a

1For recent work on this front, see Lamont et al. (2014).
2See Atkinson et al. (2011) and related work for recent evidence on the evolution of inequality in a large

number of countries. Sandel (2020) analyses the resentment against governing elites and anti-elite movements in

a context of income polarization. Political scientists Hacker and Pierson (2010) and Bartels (2018) analyze the

role unequal political representation on policy outcomes and inequality in the United States.
3See, for example, Gentzkow & Shapiro (2011) for evidence on ideological segregation in different media

platforms. Campante & Hojman (2013) provide a theory and historical evidence on how changes in the media

environment may cause political polarization.
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home address in the case of residential segregation, a school, or the media outlets she visits to

acquire information. For example, if the analyst is interested in racial segregation in schools,

social types are races and, locations, schools. Suppose instead, she is interested in ideological

segregation in media consumption. In that case, social types are individuals’ political ideologies,

and the location corresponds to the set of media outlets she consumes.

The theory presented in this paper has two building blocks. First, we take pairwise interactions

as the basic unit of our measure. In practice, the measures we propose aggregate the contribution

of each pairwise interaction to overall segregation. Second, the contribution of each interaction

depends on two dimensions: the intensity of the interaction and the diversity of the social

characteristics of the pair involved. On the one hand, the more two individuals have access

to each other, the more they meet or encounter, the larger the intensity of that particular

interaction. Intuitively, individuals who occupy the same location interact more than those

occupying different locations. On the other hand, the value of an interaction depends on the

social types of the pair interacting. In principle, an interaction between two individuals from the

same social group contributes more to segregation than one between those belonging to different

groups. In sum, both the intensity and the diversity of the interactions matter.

Our axiomatization allows us to obtain a simple formula in terms of these two dimensions

characterizing each interaction. Building on axioms that parallel those of Expected Utility

theory, Theorem 1 provides a representation of segregation that is precisely the sum over pairwise

interactions of a product between the intensity of an interaction—analogous to the probability

of two agents meeting—, and a social value of the interaction that depends on the social types

of the pair.

The second general result of the paper shows that the measure can be interpreted in terms

of a covariance of distances: a distance in the space of social types—a social distance—and

a distance in the space of locations—a spatial distance. Specifically, we identify a large class

of segregation measurement problems, distance-based problems, in which the intensity and the

diversity of interactions are linear functions of distances in the space of locations and the space

of social types, respectively. In the space of social types, it is always possible to define a distance

between social groups. The choice of the distance depends on the problem under study and

the researcher’s objective. For instance, if we are only interested in distinguishing whether two

individuals belong to same group or not—such as it is normally done in the study of racial

segregation—two individuals with the same race are assigned distance 0 while two individuals of

different races are assigned distance 1. The distance can be richer if the social types’ space has an
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order, such as unidimensional ideology space or income levels. In the first case, someone who is to

the far right of the spectrum is further away from a left-winger than a moderate. Similarly, it is

also natural to define a distance in the space of locations. Again, if the analyst is simply interested

in distinguishing whether two individuals coincide at one location (e.g. students attending the

same school), a discrete distance can be used. In other applications, more sophisticated notions of

a distance could be useful (e.g. distance between residences, ideological distance between media

outlets, etc.). Theorem 2 shows that in this context segregation is proportional to the covariance

between the social distance—distance across social groups—and the spatial or location distance.

Intuitively, segregation is large when two individuals of the same or proximate social groups

are spatially proximate to each other, so that most interactions or encounters occur between

individuals who share social characteristics.

We distinguish and obtain characterizations for two cases: with and without an individual

resource constraints. The resource constraint represents a limit to the interactions an agent

can have. Intuitively, if individuals have a time constraint, the more interactions they have,

the smaller the time spent on each of them. This constraint reflects on the interaction intensity

measure. We show that if individuals have access to a single location (e.g., school, residence) and

have resource constraints, minimal segregation configurations are associated with a homogeneous

distribution of social groups across areas. This need not be the case in the absence of resource

constraint, as in this case, scale effects may play a role.

We use our framework to study two empirical applications. The first one measures socioeconomic

segregation in the Chilean school system. We use micro-data containing administrative information

on the socioeconomic status of the parents of each child in fourth and tenth grade. The social

type of each student is defined by the education level of the parents and each student’s location is

simply the school she attends. We compute the school segregation index for the 22 largest cities

in the country. We find that the segregation measures obtained for schools are highly correlated

with the most recent measures of socioeconomic residential segregation. The variation across

cities seems to be explained by sensible variables such as differences in the structure of local

school supply. We also show that segregation depends on the grade, with more segregation in

elementary school than high school, likely due to differences in mobility.

Our second application measures segregation in media consumption for 28 European countries,

using survey data from Eurobarometer. Agents are characterized by an ideology—their social

type—and a set of outlets where they get information from—their location. Agents are allowed

to get information from many outlets, so that an individual location is really a vector for each
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media platform—radio, TV, and newspapers—rather than a single location. Each component of

the vector is associated with a particular outlet. In this case individuals can meet in more than

one location. We find a strong correlation between segregation levels across media environments

for each country, suggesting that there are some fundamental features, possibly related to the

idiosyncratic political environment. In addition, we find that, for each media platform there

is some correlation between segregation and the number of existing outlets, but this is not a

general rule.

The paper contributes to the literature on three different margins. First, our framework

is relatively general and can be applied broadly. In most previous theories of segregation

measurement, both the social types or groups space and the space of locations is given. For

example, in a classical paper such as Duncan & Duncan (1955) social types are race and

locations residences (see also Massey & Denton (1988)). By considering a more general set

up, most known applications can be accommodated by the framework. Second, an important

consequence of a more general framework is that is it allows to explore more general propositions.

In concrete, by introducing the notion of distances in the interaction space and the social types’

space allows to provide a natural interpretation of segregation as a covariance between spatial

and social distances of pairs of individuals. Another issue illuminated by our framework is that

the segregation order induced by the measure may coincide with widely used measures such as the

Duncan or Atkinson measures under some assumptions but not others. Specifically, for these

and other measures, minimal segregation is achieved by a configuration in which interactions

in each local community reproduces the distribution of social types in the general population.

This is true in our framework under some assumptions such as the existence of a resource or

budget constraint for each individual, but may not hold if this assumption is relaxed.4 Finally,

the theoretical flexibility in our framework allows to tackle problems in which individuals may

encounter at multiple locations such as the consumption of multiple media outlets, as illustrated

by our second application. The rest of the paper is organized as follows. Section 1.1 reviews

the literature and its relationship with this work. The basic framework and the axiomatization

of our measures is presented in Section 2. The general characterization of our measures is

4We explore in detail this issue in a companion paper (Correa & Hojman (2021)) where we show that, in

the absence of capacity constraints, minimal segregation could be achieved by configurations in which some

locations are associated with a relatively equal distribution of agents while other locations involve segregated

individuals, that is, a share of the most numerous groups in locations with a socially homogeneous population.

This configuration can sometimes maximize interactions between a social majority and a social minority group,

due to scale effects.
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summarized by theorems 1 and 2 in Section 3. Section 6.2 presents our two applications, one

on socioeconomic segregation in Chilean schools and the other on the ideological segregation of

media consumption in European countries. New questions and extensions of the framework are

discussed in the conclusion section.

1.1 Related Literature

A detailed review of the most commonly used segregation indexes and their properties in social

sciences can be found in James & Taeuber (1985) and Massey & Denton (1988). Most traditional

segregation measures focus on residential segregation by race can be classified in two categories,

evenness or exposure. Evenness measures focus on the differential distribution of groups across

the city and include the Dissimilarity, Gini and Atkinson indexes. Instead, exposure measures

refer to the potential contact between members of different groups, and the most used of this

class is the Isolation index. A concise critique of the limitations of both types of measures can

be found in Echenique & Fryer Jr (2007).

The economics literature on segregation measurement remains small, with relatively recent

relevant contributions such as Echenique & Fryer Jr (2007) and Frankel & Volij (2011). These

papers propose axiomatic foundations that identify the desirable properties of a segregation

ranking, as we do. Alonso-Villar & Del Ŕıo (2010) and Frankel & Volij (2011) study multi-group

indexes. Frankel & Volij (2011) propose two multi-group indexes for school segregation: the

Atkinson Index for cases with a fixed number of social groups and the general case’s Mutual

Information index.

Echenique & Fryer Jr (2007) propose the Spectral Index to tackle two-race residential segregation

measurement. Their measure is based on the aggregation of individual segregation measures in

a residential network, where nodes are residences linked to neighboring residences. The value

of individual segregation is implicitly defined as the weighted sum of direct neighbors’ values in

the network, where the weight is zero for neighbors of a different race and a positive number

for same-race neighbors. This measure captures the idea agents are more segregated the more

segregated are the same-race agents with whom they interact. Agents are budget-constrained in

their interactions so that the positive weights just mentioned are inversely proportional to the

total number of direct neighbors.

Our framework is more flexible than the ones provided by these papers. It can be used for any

number of social groups. It is also suitable to study different environments, such as the school

and residential segregation problems in each of these papers, and others, such as ideological
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segregation in media consumption. Also, we consider the possibility of agents who interact in

multiple locations and may or may not have budget constraints (which may be natural in some

applications but not others).5 In addition to a more general framework, some of the principles

in our measures differ from these papers. For example, while the Spectral Index proposed by

Echenique & Fryer Jr (2007) is based on the aggregation of individual segregation measures, our

building blocks are pairwise interactions, so that our measures can be expressed as a weighted

sum of values of each pairwise interactions. Each interaction’s weights and values depend on

distances in the landscape and across the social group of each pair. The characterization that

we propose, in which both the diversity and intensity of an interaction between two agents are

a function of distances, is suitable for different types of segregation problems and permits a

relatively general characterization in terms of a covariance of the distances in the interaction

and social space. Our paper is the first work proposing a segregation measure based on these

concepts to the best of our knowledge.6

The applications presented provide empirical evidence of socioeconomic segregation in Chilean

schools and ideological segregation in media consumption in Europe. The literature on socioeconomic

segregation among schools is surprisingly undeveloped, most likely because of both the student

level’s lack of income data and the focus on segregation by race (see Reardon & Owens (2014)

for a detailed review). In a novel study, Owens et al. (2016) study the evolution of income

segregation between schools and school districts in the US. To overcome the lack of data, they

use the count of enrolled students who are eligible for free lunch as a proxy for income. In this

paper, instead, we use the parents’ educational level as a proxy for students’ income, which

allows us to have a finer measure of income levels. We find that income segregation between

schools is closely related to measures of residential segregation.

There is a burgeoning literature on segregation in media consumption, primarily driven by

scholars’ and policy-makers’ concerns regarding the impact of new technologies and platforms

on the supply of tailor-made content and increased selective exposure to like-minded views. For

5Using the terminology introduced later, we allow for general landscapes.
6To force a comparison, we can express our measure as a sum across individuals of the contribution of each

of the pairs that include this agent (times one half to avoid double counting) and define the distance in the

residential landscape as the distance in the residential network as defined by the the shortest path. As in

Echenique & Fryer Jr (2007) the value of segregation increases with same-group interactions (a social distance

equal to zero). However, in contrast to their index, the value of an interaction between individuals i and j does

not depend on the individuals’ races in the shortest path (or any path) between these individuals, just on the

distance. In our framework, larger distances, regardless of intermediaries’ race, are interpreted as having a lower

intensity of interaction.
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instance, Gentzkow & Shapiro (2011) study ideological segregation for media outlets online and

offline using a very rich dataset. They compute segregation by using a dissimilarity index. The

main difference between our approach and theirs is that our index considers that agents can

interact on different locations simultaneously. Moreover, it allows for a complete ideological

scale. Given that nowadays, the span of various news outlets’ ideologies and specific content is

more prominent, using measures that enable the analyst to use a finer grid of ideological positions

makes a difference. Although the effects of segregation over political outcomes are out of the

scope of this paper, we refer the reader to related works, such as Stroud (2008), DellaVigna &

Kaplan (2007), and Campante & Hojman (2013).

2 A Segregation Model Based on Pairwise Interactions

In our framework, agents are characterized by a social type and a location in the space of

interactions. This pair of characteristics is flexible enough allows us to include a large number

of applications. An agent’s social type could be race, income, education, ideology, ethnicity,

religion, or any other characteristic (or combination of them) of interest to the analyst. If we

are interested in racial segregation, the social type is race. If we are interested in socioeconomic

segregation, the social type can be any measure of socioeconomic status.

On the other hand, implicit or explicitly, any segregation measurement takes into account

an environment in which people interact. For residential segregation, this environment is a city

where residences locate; for racial segregation in schools, it is a set of schools in a school district or

city. In the case of ideological segregation in media consumption, the media outlets or platforms

available to consumers are locations where agents can encounter. In these and other examples,

we can identify a set of locations where people can coincide or not. In addition to locations, in

each application, the environment has a configuration that can affect agents’ distribution across

locations. For example, in the case of schools, each school has a capacity that limits students

who can use that location. In contrast, capacity constraints may not be relevant in the media

outlets example, as the number of agents with access to a given outlet is unlimited in most cases.

We refer to the set of locations and their capacities as a landscape. Both the locations and their

capacities are features of the interaction structure determined mainly by either market forces or

public policies.

While social types identify social differentiation, locations identify the space in which agents

may or may not encounter and interact with each other. The measures of segregation we propose
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aim to capture the extent to which agents with different social types—i.e., belonging to different

social groups—are distantly located in the space of interactions.

We introduce the framework’s essential elements, the definition of a distance-based measure,

and the axioms postulated for our segregation measures.

2.1 The Basic Framework

The three main elements in our environment are: (i) a set of agents, N , (ii) a space of social

types, Σ; (iii) a landscape, Λ. The set of agents N , with generic element i, is finite and, with

some abuse of notation, N also denotes its cardinality.

The space of social types Σ is a finite set. Each element identifies a social characteristic

defining the social group each agent belongs to. This space sets the stage for the specific problem

of interest and remains fixed throughout the analysis.

Definition 1 A landscape Λ is a pair < L,Q >, where

(i) L is a set of locations, and

(ii) Q = {Ql}l∈L is a collection of location capacities, with Ql ∈ R+ possibly unbounded.

The space of admissible landscapes is denoted by L.

Note that given a landscape Λ, we define a space of individual locations X(Λ), which determines

the way agents can be distributed across the landscape. More precisely, agent i’s location is a

vector xi = (xi1, ..., x
i
L) ∈ X(Λ), which describes the location(s) in the landscape the agent visits.

For instance, in the case of schools, students can only attend one school at a time, and then the

space of individual locations is described as

X(Λ) = {xi ∈ {0, 1}L|
∑
l∈L

xl = 1}. (2.1)

If schools have some capacity constraints, the space of individual assignments would be a

constrained space, i.e.,

X(Λ) =

{
xi ∈ {0, 1}L|

∑
l∈L

xl = 1 ∧
∑
i∈N

xil ≤ Ql

}
. (2.2)

We assume that the set of admissible landscapes includes the possibility of complete segregation,

i.e., a profile of location assignments such that for any two agents i and j with different social

types, if xjl > 0 then xjl = 0.
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Given the space of individual locations X(Λ), define a profile of locations x ∈ RL×N as the

set of all agents’ locations. In particular, x is a matrix whose ith row is given by xi ∈ X(Λ).

Analogously, given the space of social types Σ, define a profile of social types s ∈ R|Σ|, as a

vector with generic element si ∈ Σ. We put these profiles together in the following definition.

Definition 2 A profile of agents’ characteristics is given by a pair of profiles (x, s) ∈ RL×N ×

R|Σ|, with generic element (xi, si) ∈ X(Λ)× Σ.

The unit on which we measure segregation is called a community . A community might be,

for instance, a city, a set of schools, or a media platform, in which a set of agents with some social

types interact. As we mention above—and as it is usually the case in the study of segregation—

we keep the space of social types fixed across communities and allow all the other features of the

problem to varying. To illustrate this, consider the problem of residential segregation by race.

In that case, we fix Σ (a set of races) and compare the segregation levels observed in different

cities. Each city is characterized by a landscape, a set of agents, and a profile describing the

distribution of individual races and locations in the city. Formally:

Definition 3 Fix Σ. A community is given by a tuple (N,Λ, X(Λ), (x, s)), where:

(i) N is a finite set of agents;

(ii) Λ is a landscape, with associated space of individual locations X(Λ); and,

(iii) (x, s) ∈ RL×N × R|Σ| is a profile of agents’ characteristics.

To fix ideas, consider the case of racial segregation in schools for a given city. The set of

N agents corresponds to a set of students in the city. The social space is a set of racial groups

Σ = {Black, White, Asian,...}, which remains fixed across communities. The landscape Λ is

composed of a set of schools L = {school 1, school 2, ...}, and a set of capacities for each school

Q = {Q1, Q2, ...}, where the latter corresponds to the maximum number of students that each

school can admit. Each student’s social type is a race si ∈ Σ. An individual location is a vector

xi = (xi1, ..., x
i
L) such that xil = 1 if student i attends school l, and zero otherwise.

The building blocks of our segregation measure are pairwise interactions. More specifically,

our measures are based on the aggregation of each pairwise interaction’s value, weighted by a

measure of the interaction’s intensity. Denote by Π(N) to the set of possible pairwise interactions

between agents in N , with generic element π = (i, j).7 We omit N when it is clear from the

7More precisely, Π(N) = {π = (i, j) ∈ N ×N | i 6= j} .
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context. Let ∆ denote the space of probability distributions over Π. Each pairwise interaction

π = (i, j) contributes to the level of segregation through two components: (i) an intensity ,

describing how likely it is that a pair of agents meet in the landscape, and (ii) a social value,

describing the value of the interaction. Throughout the paper, we focus on location-based

intensity functions—i.e., the intensity of an interaction between two agents depends on their

locations—, and social values that are type-based—i.e., the value of an interaction between two

agents depends on their social types.

Definition 4 Let Π be the set of possible pairwise interactions.

(i) µ : Π → ∆ is a location-based intensity function if for some function m : X(Λ) → ∆,

µ(i, j) = m(xi, xj) for all (i, j) ∈ Π.

(ii) ρ : Π → R is a type-based social value if for some function r : Σ → R, ρ(i, j) = r(si, sj)

for all (i, j) ∈ Π.

We interpret the intensity function as a descriptive measure of the likelihood that any two

people in a community meet or have access to each other. We note, however, that a normative

baseline could define the relative intensity of a particular interaction. To illustrate this issue,

consider racial segregation in schools. Implicitly, most segregation measures used for this problem

assume that any agents in the same school (more generally, two agents in the same location)

are accounted equally by the measure. This assumption does not consider that within a school,

students may endogenously sort based on homophily, that is, with a tendency to interact more

with students of the same race. For example, take two schools A and B, each one with 20

students (2 black, 2 Asian, 2 Latino, and 14 white). Suppose that in school A, students interact

randomly, disregarding race, while in school B, students only mingle with those of the same race.

Existing measures would not distinguish two situations. There might be at least two reasons for

this. The first one might be a practical limitation of the data: it seems pointless to distinguish

between these two schools if the information regarding detailed interactions or social networks

within a school is not available. The second reason normative: from the perspective of social

cohesion and empathy, it may be valuable for students to have access or contact with a diverse

population of students.

The group-based nature of the social value represents the fact that the value of an interaction

between two agents depends on their social types. The term “social value” emphasizes the idea

that value in a theory of segregation is not associated with a measure of personal productivity

but with the social diversity of interactions.
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As seen shortly, it will prove convenient to use an aggregate version of the intensity function,

µ̃ : Σ× Σ→ ∆, defined by

µ̃(s, s′) :=
∑
i:si=s

∑
j:sj=s′

µ(i, j). (2.3)

This corresponds to the aggregate fraction of interactions between agents in groups s and s′. In

addition to this, we denote by Nl to the number of agents in location in l ∈ L, and Ns to the

number of agents with social type s ∈ Σ.

2.2 Distance-based Measures

In this section, we consider the case in which both the space of social types and locations can

be associated with natural notions of distances. The motivation for this is both conceptual and

computational. As shown in Section 3, our measures conceptualize segregation as the covariance

between a social distance and location distance. Intuitively high segregation can be associated

with individuals with the same or proximate social types located in the same or near locations.

Let us consider first the space of locations. The notion of distance is natural in this case.

Consider, for instance, residential segregation. People naturally live closer to some neighbors

than to others, and there are many distances between residences that can capture that. One

might consider a discrete distance indicating whether individuals live in the same block, a

geodesic distance, or even walking times between two residences. This case differs from school

segregation. When the space of interactions is a set of schools, it is usually assumed that students

only interact with other children in the same school. In that case, it is direct to endow the space

of interactions with a discrete metric taking value 0 for children in the same school and 1 for

children in different schools.

In the space of social types, the notion of a distance might be more subtle. Social types might

take the form of groups clearly identified, an ordered set of categories, or a more continuous scale.

In the case of race or ethnicity, a trivial notion of distance is given by the discrete metric that

assigns distance 0 to those in the same group and distance 1 to those in different groups. Indeed,

this notion of distance can always be defined and associated with space of social types Σ. There

are other cases, however, in which the structure of Σ induces a natural order and distance. For

example, if the socioeconomic status is defined by a scale such as income or education years,

types can be ordered, and there is a naturally defined metric space. This is also the case for

social types defined on a uni-dimensional ideology line.

We say that a problem is distance-based if it is possible to characterize both the intensity
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and the social value of an interaction by some notion of distance. More precisely, a problem

is distance-based if both the space of individual assignments in the landscape, and the space

of social types, are endowed with a metric. Denote these metrics by dx : X × X → R and

ds : Σ×Σ→ R. If this is the case, the intensity and social value functions from Definition 1 can

be defined in terms of distances.

Definition 5 formalizes the notion of linear distance-based problems, that will be our relevant

framework to obtain Theorems 2 and 3. For simplicity of notation, we define the distance

in the landscape by dΛ(i, j) = dx(xi, xj), and the distance in the space of social types by

dΣ(i, j) = ds(s
i, sj).

Definition 5 A distance-based problem is a problem in which (Σ, ds) and (X, dx) are metric

spaces. A distance-based problem is linear if the functions µ : Π → ∆ and ρ : Π → R satisfy

(i) µ(i, j) = m0 −m1dΛ(i, j) for some m0,m1 > 0, and (ii) ρ(i, j) = r0 − r1dΣ(i, j), for some

r0, r1 > 0.

2.3 Axioms

In this section we state the main axioms. The first one, Anonimity , reflects the fact that a

segregation order does not depend on agents’ identity but on their social characteristics.

Axiom 1 (Anonimity) Any permutation of agents that preserves the original social groups

does not change segregation.

This axiom allows us to focus on the functions ρ̃ and µ̃ instead of ρ and µ. The next two

axioms refer to how changes in communities, and combinations of them, affect segregation. We

combine communities by combining the aggregate intensity functions that characterize them (see

equation 2.3). We formalize this idea in the following definition.

Definition 6 Let C1, C2 be two communities, with associated aggregate intensity functions µ̃1

and µ̃2, respectively. Then, we define the community C = αC1 +(1−α)C2 as one with aggregate

intensity µ̃ = αµ̃1 + (1− α)µ̃2.

In Appendix C.1, we illustrate these operations through an example for the case of socioeconomic

segregation in schools.

Axiom 2 (Continuity) Let C1, C2, C3 be three communities such that C1 �s C2 �s C3. Then,

there exist α such that αC1 + (1− α)C3 ∼s C2.
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Axiom 3 (Independence) Let C1, C2 be two communities such that C1 �s C2. Then, for any

C3 and α ∈ [0, 1], αC1 + (1− α)C3 �s αC2 + (1− α)C3.

In addition to these technical axioms, we introduce axioms that allow us to define the distance-

based notion of segregation.

Axiom 4 (Spatial Proximity) Let π = (i, j), π′ = (i′, j′) to be two pairs such that dΛ(i, j) >

dΛ(i′, j′). Then, µ(i, j) < µ(i′, j′).

Spatial Proximity refers to the idea that the probability of two agents meeting in the landscape

is decreasing in the distance between them.8

Axiom 5 (Social Proximity) Let π = (i, j), π′ = (i′, j′) to be two pairs such that dΣ(i, j) >

dΣ(i′, j′). Then, ρ(i, j) < ρ(i′, j′).

The Social Proximity axiom corresponds to the idea that segregation decreases with more diverse

interactions. In other words, the more similar two people are, the more does their interaction

contributes to segregation. Conversely, diverse interactions contribute to lower segregation. We

observe that Integrating different groups of people might affect economic outcomes through

changes in stereotypes, beliefs about others, and changes in social interactions. There is vast

literature on the effects of social and ethnic diversity over several outcomes.9 For instance,

Alesina & La Ferrara (2000) and Easterly & Levine (1997) show a negative relation between

social diversity and public good provision and GDP. However, there is also evidence that goes in

the opposite direction. Hong & Page (2001) and Hong & Page (2004) develop a theory of problem-

solving, in which social diversity is beneficial since it brings with it a different interpretation to

a problem, increasing innovation and the probability of solving it. Alesina & La Ferrara (2005)

develop a model in which preference diversity may imply public goods under-provision, which

might be socially costly.

Still, there might be benefits in terms of innovation and creativity, which might help overcome

the costs depending on the development of the group under study. Also, there might be

differences in terms of how the benefits of diversity present over time. Putnam (2007) shows that

social diversity costs in terms of trust in society are observed only in the short term, but social

diversity is welfare improving in the long term. Beyond the evidence on the value of diversity on

different types of productivity, the social value’s monotonicity concerning social diversity could

8This is the same intuition present in the axiom School Division Property in Frankel and Volij (2011): dividing

a school is analogous to increasing the distance between agents.
9For a detailed literature review on the topic see Alesina & La Ferrara (2005).

14



be defended from a normative perspective. We aim to extend the analysis to measures that do

not impose this monotonicity condition in future work.

So far, axioms 4 and 5 ensure that the intensity of an interaction is a decreases with the

distance in the landscape, and that the value of each interaction decreases with the distance in

the types’ space. These axioms do not restrict the curvature of these functions.

The following axioms, impose structure on these functions that allow for a simple interpretation

and a representation convenient for applications. They do not seem essential to us but yield

simpler formulas, and simplicity is useful for applications.

Axiom 6 (Linear Intensity) The effect of an additive increase in the spatial distance between

two agents over their interaction intensity does not depend on their original distance. More

precisely, take a pair (i, j) with two possible assignments (xi, xj) and (xi0, x
j
0) with intensities

µ(i, j) and µ0(i, j), respectively. Then, µ(i, j)− µ0(i, j) = K · |dx(xi, xj)− dx(xi0, x
j
0)| for some

constant K < 0.

Axiom 7 (Linear Value) The effect of an additive increase in the social distance between two

agents over their value to segregation does not depend on their original distance. More precisely,

take a pair (i, j) with two possible social types, (si, sj) and (si0, s
j
0) with intensities ρ(i, j) and

ρ0(i, j), respectively. Then, ρ(i, j)−ρ0(i, j) = K · |ds(si, s)−dΛ(si0, s
j
0)| for some constant K < 0.

3 Representation Results

In this section we state our main results. For the ease of exposition all the proofs are relegated

to Appendix A.

3.1 General Representation Result

We first prove that a segregation order can be represented by a function valuing pairwise

interactions, which is the baseline for the measures obtained in sections 3.2 and 4.

Theorem 1 The preference order �s satisfies axioms 1-3 if and only if such preferences are

represented by:

S =
∑

(s,s′)∈Σ×Σ

µ̃(s, s′)ρ(s, s′), (3.1)

where µ̃(s, s′) is defined by equation 2.3.

15



Although this representation might seem general, it gives us an intuition of understanding

segregation in a society. The basic idea is intuitive: the distribution of agents in the space

determines the probability of observing each type of interaction. Each city is like a lottery

of interaction values. To measure segregation, we measure the value of these lotteries for a

given segregation order. In the next section, we analyze the case in which interactions can be

characterized in terms of distances.

3.2 A Distance-based Representation

In linear distance-based problems, both the intensity and the social value of an interaction are

linear functions of distances in the corresponding spaces (see Definition 5). These functions’

linearity allows us to prove a very intuitive result: segregation is proportional to the covariance

between social and spatial distances. The idea is that a community is more segregated if similar

people are more likely to meet, i.e., similar social types are closer in the space of interactions.

Analogously, a community is more segregated if different people are unlikely to meet, i.e., different

social types are far from each other in the space of interactions. The more the social and spatial

distances covary, the more segregated the society is. In the extreme, a completely segregated

society would be one in which there is a one-to-one mapping from the space of social types to

the space of interactions.

Theorem 2 A segregation index satisfies Axioms 1-7 if and only if it is proportional to S =

cov(dΛ, dΣ).

Note that axioms 4 to 7 are only consistent with linear distance-based problems. In particular,

we can show that a problem is linear distance-based if and only if it satisfies axioms 4-7. An

alternative interpretation of Theorem 2 is that segregation is proportional to the coefficient of

a regression of the distance in the space of locations on the distance in social types. Thus,

segregation is a measure of the linear association between both.

4 Index Normalization

In its more general form, our index is defined by:

S =
1

Π

∑
(i,j)∈Π

ρ(i, j)µ(i, j) (4.1)

In most of the segregation literature, measures are normalized between 0 and 1, where the

lower bound represents a configuration that achieves the minimal segregation and the upper
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bound the maximal. For example, for the Duncan index, which is defined for two social

types, minimal segregation is achieved when each location’s population reproduces the global

distribution of types in the community. The maximal segregation is obtained when individuals

of the same social group occupy all locations.

Recent work shows that normalizing a segregation index is not trivial.10 In our case, in line

with Expected Utility Theory, it is always possible to consider a linear transformation of our

measure that respects the segregation ranking and is associated with a normalization:

Ŝ =
S − Smin

Smax − Smin
(4.2)

which by construction is 0 for the minimum value of the index, Smin, and 1 for its maximum value,

Smax. However, computing these numbers for a given application is not necessarily immediate.

More precisely, a uniform distribution of social types across locations does not necessarily achieve

minimal segregation, in contrast to the Duncan index.11

The underlying normalization criteria of segregation measures are often down-played in

the literature. In the residential segregation literature, normalization typically considers the

landscape as fixed, i.e., for a fixed Λ. In practice, this assumes a given built (or physical)

environment so that the minimal and maximal segregation are found by varying the individual’s

assignment profile across locations. The underlying thought experiment is that people of different

social groups can move within the same city. With a few exceptions, this is usually the case in

the school segregation literature as well. From a descriptive perspective, it is reasonable to take

the landscape as fixed in the short run. From an analytical perspective, this is reasonable if the

segregation measures provided are invariant to landscape changes. However, neither of these

assumptions is obvious.

Market supply and public policy that affect the landscape can have a substantial impact on

segregation. For example, new urban developments influence segregation in a city. In recent

work, Agostini et al. (2016) show that the evolution of segregation in Santiago—one of Latin

America’s most populated towns—is determined mainly by housing policies that resulted in

10Echenique and Fryer (2006) do not impose normalization for the maximum segregation.
11This issue is treated in detail in our companion paper Correa and Hojman (2021). There we show, for the

case of schools, that the configuration that achieves the minimal segregation is not obvious and is sensitive to

assumptions that may seem innocuous at first. This shows that our measure captures a notion of segregation

that, depending on the assumptions, may coincide with traditional measures. However, it may also differ in a

meaningful way. We also show that the associate minimization problem is well behaved, i.e., it associates with

the optimization of a quadratic form with linear constraints and can always be solved numerically.
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the allocation of low-income families in the new peripheral neighborhoods of the city. Large

government-funded projects, new secluded high-income developments in the city’s borders, and

central areas’ densification. On the other hand, changes in media technologies and markets have

drastically affected the supply of content in the media market, affecting ideological segregation

and polarization (see Campante & Hojman (2013) and Levy & Razin (2019)). The landscape can

also be affected by regulations and government initiatives—for instance, publicly-funded school

supply and capacities. In an urban setting, construction regulations, location of social housing

are only some examples. In media markets, the regulation of media concentration ownership,

entry, and policies to foster balance in media supply ideologies provide additional illustrations.

Simultaneously, from a normative stance, it is far from evident whether segregation measures

should be invariant to changes the landscape. In a companion paper, we show for the case of

school segregation that the nature of assignments that minimize segregation can vary substantially

across different landscapes. Perhaps more importantly. If changes in the landscape affect

segregation or the minimum and maximal segregation, why should segregation normalization

take them as fixed? To illustrate this issue, consider two societies, A and B, with the same

population and distribution of social groups. Suppose that in A there are 1000 small schools

and in B ten large schools. Why should segregation normalization take the number of schools as

fixed if this variable changes over time? Similarly, if A and B are two countries, one with 1000

news websites and the other with 10, why should we normalize segregation taking the media

landscape as given?

In principle, our framework does not take a stance on whether the landscape should vary

in the calculation of maximizing segregation. In fact, in the short run the landscape is not

flexible. We may consider two variants of the optimization problem leading to the maximal and

minimum segregation levels. The first one takes the landscape Λ as given and considers the

location assignment profile as the optimization variable:

min
x∈X(Λ)

S(x, s; Λ). (4.3)

The solution of this problem is some profile x∗(Λ). The value of the problem is Φ(Λ) =

S(x∗(Λ), s; Λ) (analogous for maximization). If minimal and maximal segregation allow to vary

the landscape, we can consider a second stage optimization across admissible landscapes,

min
Λ∈L

Φ(Λ), (4.4)

yielding a solution Λ∗. In the Appendix, we describe the normalization optimization problem

for the application to ideological segregation in media outlets, which is solved using numerical
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methods.

In the following section we specialize the measures to the case of unit location assignments

and individual capacity constraints. In this case, large class of problems, we provide an explicit

normalization and formula.

5 Individual Capacity Constraints

So far, we have considered the case in which agents do not have capacity constraints in their

interactions with others. For example, given two schools, A and B, one with 20 students and the

other with 100, and assuming that agents interact only with agents in their school, the intensity

of interaction functions give equal weight to any interaction in school A and school B. The

unconstrained capacity could be a reasonable assumption for situations in which what matters is

whether two students share the same space but not the amount of time spend with each other. If

empathy mainly were associated with sharing a common location with people of a different race

—access to a diverse social group— but not with the time spent with people of other groups, this

makes sense. This is also a sensible assumption if the most relevant activities in school involve

the whole population. However, in many cases, it makes sense to assume that each agent has

a capacity constraint, a time o resource budget that she allocates to each interaction (see, for

example, Echenique & Fryer Jr (2007)).

In this section, we extend the framework to consider agents having a time budget or capacity

constraint. In the school case, a capacity constraint implies that the probability of meeting

other students decreases with the size of the school, or, in other words, the time spent with

each classmate decreases as the number of classmates increases. Thus, the weight of a particular

interaction in school A, the smaller school, is larger than the weight of an interaction in school

B, the larger school.

We introduce a new axiom that formalizes capacity constraints in our framework. The

intuition is that, as agents have a limited time to interact with each other, to increase the

interaction with one agent, they have to reallocate their resources across space, decreasing the

intensity of interaction with others.

Axiom 8 (Resource Constraint) Agents have limited resources to interact with each other,

which is represented by the following resource constraint:∑
j

µ(i, j) = T ∀i (5.1)
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We restrict the analysis to a framework in which agents can only be assigned to a unique

location. This imposes a restriction over the space of individual assignments X, for any given

landscape Λ. The following definition formalizes this notion.

Definition 7 An individual assignment is a Unit Location Assignment (ULA), if (i) xi ∈

{0, 1}L, and (ii) xTi eL = 1.

Let Πl = {(i, j)|xi = xj = el} to be the set of possible pairwise interactions within location

l ∈ L, and denote by d̄lΣ = 1
Πl

∑
(i,j)∈Πl

dΣ(i, j) to the average social distance between pairs of

agents within location l.

Proposition 1 Consider an assignment satisfying (ULA), and suppose axioms 1-8 hold. Then,

the normalized segregation index is given by

S = 1− 1

d̄Σ

L∑
l=1

wld̄
l
Σ, (5.2)

where wl = Nl

N is the share of the population in location l.

The proof can be found in the Appendix. Observe that the index can be expressed as

S =

L∑
l=1

wl

(
1− d̄Σ

l

d̄Σ

)
, (5.3)

that is, a weighted sum across locations of an expression that compares the local social distance

with the global social distance. The weights are given by the share of the population in each

location. This is parallel to the dissimilarity index, which can also be expressed as a weighed

sum across locations of a quantity that compares the local share of a minority relative to the

aggregate share of the minority.

6 Applications

6.1 Socioeconomic Segregation in Schools

In this section, we use distance-based segregation measures to study school segregation. Given

the poor availability of income data at the student level, the empirical work on schools’ economic

segregation is not very developed. In an attempt to fill this gap, in this paper, we use administrative

individual-level data of Chilean students provided by the Ministry of Education to explore

socioeconomic segregation in schools across different cities. For each student in 4th grade and
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10th grade in 2014, the dataset identifies the school they attend, in addition to sociodemographic

and family background variables.12 In the absence of reliable family income, we use the parents’

educational level —average years of education of mother and father—as a measure of each

student’s socioeconomic status.

Segregation measures are computed for all regional capitals, including the three Chilean

metropolitan areas, Santiago, Valparáıso and Concepción. In our main terminology, each of

these regional capitals constitutes a different community. A set of students inhabits each city,

and each student is characterized by a socioeconomic level and a single school to which she

attends.

We denote each school by l ∈ {1, ..., L}, and li corresponds to the school attended by student

i. We use N to denote the total number of students in a district, Nl to the number of students

at school l, and Ng,l to the number of students in quintile g attending school l. Also, denote by

Π and Πl the number of pairs in the population, and in school l, respectively.

In this context, the landscape is a partition, as in Unit Location Assignments (see Definition

7). As students only interact with other students attending their same schools and assuming

that interaction is uniform, the corresponding metric in the space of interactions is a discrete

metric.

We divide the income distribution into income quintiles, and associate to each student the

average parents’ educational level of the corresponding quintile. Thus, dΣ(i, j) = |yi − yj |,

where yi is average years of education of the respective quintile. Then, from proposition 1 the

normalized index can be computed using the following equation:

S = 1− 1

dΣ

∑
l∈L

Nl
N
d
l

Σ (6.1)

where dΣ is the average social distance in the population, and d
l

Σ is the average social distance

at school l.

The results are shown in Table 1. A few remarks are in place. First, for both grades,

segregation is highly correlated with the city’s size (in terms of students and schools). In

particular, Santiago is the most segregated city in both grades, followed by Temuco and Valparaiso.

Secondly, in each city, segregation is higher in 4th grade than in 10th grade. These facts are

consistent with residential socioeconomic segregation patterns in Chilean metropolitan areas

12In Chile, students of these grades in all schools —with a few exceptions— are required to take a

standardized test in math and language, the SIMCE. The Ministry uses a complementary questionnaire to gather

sociodemographic and family background information in addition to the individual scores. The dataset covers

roughly 95 percent of all Chilean schools, excluding new and special education schools.
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and the role of distance in school choice. Indeed, we compare our school segregation index

with residential segregation measures for Chilean cities obtained by Agostini et al. (2016), who

use household income as an SES measure and Census data. We obtain a correlation coefficient

between school and residential segregation of 0.79 for 4th-grade students, vs. a 0.67 for 10th

grade. Even when both are high, the correlation for 4th grade is slightly higher, probably

reflecting the fact that younger children have more mobility constraints than students in 10th

grade and tend to attend schools that are, on average, closer to their residences than those in

10th grade. Both comparisons are plotted in Figure 1.

Table 1: School socioeconomic segregation by city

4th Grade 10th Grade

Region S Schools Students S Schools Students

Santiago 0.395 1,244 50,535 0.346 753 41,020

Temuco 0.385 109 3,031 0.308 189 7,320

Valparaiso 0.353 340 9,079 0.308 108 6,145

La Serena 0.343 87 2,773 0.276 31 1,626

Concepcion 0.340 279 9,351 0.302 39 1,522

Puerto Montt 0.339 100 2,886 0.286 44 2,434

Valdivia 0.336 60 1,552 0.302 18 1,119

Talca 0.331 67 2,658 0.273 55 2,146

Antofagasta 0.331 74 4,214 0.253 44 3,107

Rancagua 0.310 76 2,930 0.255 42 2,612

Coyhaique 0.287 25 725 0.175 45 2,906

Punta Arenas 0.287 37 1,409 0.246 35 1,355

Copiapo 0.271 35 1,965 0.193 30 1,553

Iquique 0.262 55 2,176 0.208 11 470

Arica 0.241 65 2,422 0.215 22 946

Mean 0.321 177 6514 0.263 98 5085

Max 0.395 1244 50535 0.346 753 41020

Min 0.241 25 725 0.175 11 470
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Figure 1: School vs Residential Segregation.

Source: Residential segregation from Agostini et al. (2016).

6.2 Segregation in Media Consumption

In many situations, agents can interact with others in multiple locations. In particular, in media

consumption, agents can obtain information from different outlets, and on each of them, they

meet or coincide with other agents. This meeting can be a direct interaction, as may happen

in an online news forum, or indirectly, from obtaining the same information when they read

the same newspaper. This section measures ideological segregation in media consumption where

each location is a specific media outlet, and individuals may consume more than one outlet.

That is, location is a vector with one component per outlet.

Measures of segregation such as the Isolation index (see Gentzkow & Shapiro (2011)) may

not fully consider two media consumption features. First, agents are characterized by a rich set

of social types such as ideology, and this richness may be partially lost by imposing a discrete

metric over the social space. And second, agents can obtain information from (and henceforth,

interact through) more than one media source. Our framework can accommodate these issues.

We assume that agents have a budget of time that can allocate across news sources. We

consider the individual location vector that proxy the share of time spent on each of them. We

analyze three markets separately, i.e., TV, newspapers, and radio stations’ consumption. The

social characteristic we are interested in is a measure of political ideology. Then, our segregation

index measures the extent to which individuals with different ideologies are sharing media

consumption. We use survey data from Eurobarometer 82.4 (2014) that covers 28 European
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countries. The survey has a series of questions that ask individuals about the TV stations, radio

stations, newspapers, and websites they use.1314. The survey also asks individuals to self-identify

in an ideology uni-dimensional ten-point scale, where 1 is the extreme left and 10 is the extreme

right.15 In Table 2 we show some descriptive statistics of the dataset.

Let Λ = 1, ..., L to be the set of media outlets on each market, and xil ∈ {0, 1} an indicator

variable taking the value 1 if i consumes outlet l ∈ L and zero otherwise. As defined in Section

2.1, the vector xi = (xi1, ..., x
i
L) summarizes individual i’s consumption bundle, and we focus on

the normalized version x̂i with generic element x̂il =
xi
l∑L

l=1 x
i
l

. Individuals interact to the extent

the share media consumption, that is, if they coincide in their locations. The effective number

of location coincidences between two individuals i and j is then
∑L
l=1 min{x̂il, x̂

j
l }. This defines

our distance in the landscape:

dΛ(i, j) = 1−
L∑
l=1

min{x̂il, x̂
j
l }. (6.2)

The following example illustrates the intuition for this distance. There are two outlets,

Λ = {1, 2}, and two agents i and j. Agent i gets information from both outlets, spending half

of the time on each, but agent j only acquires information from outlet 1, spending all the time

there. Formally, x̂i = (0.5, 0.5) and x̂j = (1, 0). Then, they both share only half of the total time

together: they coincide min{0.5, 1} = 0.5 on outlet 1, and min{0.5, 0} = 0 on outlet 2. Their

distance is dΛ(i, j) = 1 − 0.5 = 0.5. This distance is a natural but necessary approximation of

the actual time they spend on the same outlet. As in our data we only have information about

which outlets the agent visits, but not the time she spends there.

Let yi ∈ {1, 2..., 10} stand for the answer of individual i in the ideological self-identification

question, a number between 1 to 10, where 1 is extreme left and 10 is extreme right. We define

the social distance between i and j as dΣ(i, j) = |yi − yj |. Let d̄Σ be the average social distance

of a uniform matching pairing, which is computed as in the previous application.

Our index is defined as:

S =
∑

(i,j)∈Π

µ(i, j)ρ(i, j) (6.3)

for some linear functions µ and ρ consistent with Definition 2 (see Section 2.2). Using theorem

13Questions QP17a,b,c y d.
14We omit websites from the analysis, as the consumption of websites is likely to include the consumption of

online versions of radio and newspapers
15Media consumption is captured by questions QP17a,b,c and d, and ideology by question D1.
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2, the measure is proportional to the covariance between social and spatial distances, i.e.

S =
1

Π

∑
(i,j)∈Π

dΣ(i, j)dΛ(i, j)− dΣdΛ (6.4)

We compute a normalized version of the index, which requires finding the expression above’s

minimal and maximal values. Maximal segregation is achieved by a media environment completely

segregated, one in which all agents with the same ideology visit the same outlet. To compute

this, we compute equation 6.4 for this configuration. As anticipated in Section 4, minimal

segregation is calculated by solving the corresponding optimization problem numerically. In

most countries, the latter’s solution involves having some fully segregated groups and others

uniformly distributed across media outlets. Details of the solution to the optimization problem

can be found in Appendix B.

Table 3 shows the segregation index values for each country and media environment. The

country with the highest segregation is Malta, which has the maximum value for the index in

radio, TV, and newspaper markets. Cyprus has the lowest index value for TV and newspapers,

while the Netherlands has the lowest segregation in radio stations. In half of the countries, the

newspapers’ market is the most segregated, while in other eight countries, the TV market is the

most segregated.

In general, the correlation between segregation and the number of outlets is low but positive,

ranging from 0.04 for the radio market to 0.28 forTV . This result is in line with theories

predicting that increasing competition in the market for news, understood as increasing competitors,

could exacerbate segregation. The main channel is that competition brings outlet differentiation

and allows consumers to self-select more effectively into news outlets with like-minded opinions

(see Mullainathan & Shleifer (2005)).

We find a high correlation of segregation across media markets. The correlation between

segregation in radio and newspapers is 0.68, while for TV and newspapers, the number is 0.80.

This might suggest that there could be structural political conditions associated with segregation.

To explore this idea, we compare segregation indices for each environment with an index of

polarization obtained from the Varieties of Democracy (V-Dem) Project (see Coppedge (2020))

As shown in Figure 2, segregation and polarization are positively correlated in all media outlets.
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Figure 2: Polarization and Segregation
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Table 2: Ideological self-identification in european countries, Eurobarometer 2014

Country Mean Median Std. Deviation Sample size

Austria 4.83 5 1.91 929

Belgium 5.08 5 2.00 924

Bulgaria 5.48 5 2.63 784

Cyprus 5.44 5 3.00 288

Czech Republic 5.39 5 2.36 949

Germany 4.89 5 1.75 1381

Denmark 5.47 5 2.35 955

Estonia 5.71 5 2.21 679

Spain 4.34 5 1.91 838

Finland 5.52 5 1.93 893

France 5.01 5 2.16 829

Great Britain 5.06 5 1.84 1092

Greece 5.06 5 2.08 729

Croatia 5.38 5 2.47 786

Hungary 5.84 5 2.32 842

Ireland 5.28 5 1.84 838

Italy 5.05 5 2.18 686

Lithuania 5.17 5 2.63 708

Luxembourg 5.25 5 1.94 411

Latvia 5.88 5 2.15 781

Malta 5.10 5 2.34 303

The Netherlands 5.08 5 1.85 969

Poland 5.94 5 2.42 799

Portugal 4.68 5 1.90 668

Romania 6.01 5 2.82 691

Sweden 5.22 5 2.35 1008

Slovenia 4.60 5 2.61 684

Slovakia 5.12 5 2.37 869
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Table 3: Ideological Segregation in european countries, Eurobarometer 2014

TV Radio Newspaper

Country Ŝ L Ŝ L Ŝ L

Austria 0.208 26 0.254 24 0.218 29

Belgium 0.193 26 0.204 29 0.210 27

Bulgaria 0.234 19 0.246 11 0.247 28

Cyprus 0.028 18 0.129 22 0.030 19

Czech Republic 0.227 23 0.247 18 0.240 29

Germany 0.192 28 0.163 27 0.208 28

Denmark 0.179 13 0.185 9 0.185 29

Estonia 0.295 22 0.177 25 0.241 29

Spain 0.224 23 0.219 22 0.256 28

Finland 0.143 15 0.130 22 0.163 28

France 0.215 27 0.233 22 0.197 27

Great Britain 0.247 26 0.235 24 0.293 28

Greece 0.199 25 0.170 26 0.249 25

Croatia 0.258 24 0.224 26 0.211 26

Hungary 0.287 19 0.260 21 0.275 27

Ireland 0.242 21 0.228 26 0.259 26

Italy 0.238 19 0.154 21 0.146 27

Lithuania 0.256 23 0.265 26 0.274 17

Luxembourg 0.162 5 0.217 12 0.188 25

Latvia 0.240 16 0.209 17 0.217 26

Malta 0.341 18 0.273 25 0.303 21

Netherlands 0.130 19 0.103 28 0.160 29

Poland 0.244 28 0.225 30 0.259 29

Portugal 0.234 24 0.176 23 0.194 29

Romania 0.185 29 0.173 27 0.157 19

Sweden 0.151 9 0.136 7 0.175 25

Slovenia 0.188 18 0.172 22 0.269 19

Slovakia 0.232 22 0.247 24 0.202 26

Min 0.028 5 0.103 7 0.030 17

Max 0.341 29 0.273 30 0.303 29

Average 0.213 21 0.202 22 0.215 26
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7 Conclusion

This paper proposes a theory of segregation measurement based on the intensity and social

diversity of pairwise interactions. In our framework, societies are described by a space of

locations, a space of social groups, and agents’ distribution across locations and groups. Both

the space of locations and the space of social groups are flexible enough to include many different

segregation problems. Locations can be schools in a district, residences in a city, or platforms

such as media outlets where individuals interact. Social groups can be race, socioeconomic status,

political ideology, or any other social identity. We axiomatize measures that can be expressed as

a weighted sum across pairs of an interaction intensity that depends on locations and the value

of pairwise interactions that relies on social identities. We prove that the index is proportional

to the covariance between spatial and social distances.

We then use our segregation measures to study two segregation problems. First, we measure

socioeconomic segregation in Chilean schools using Chilean micro-data, which includes information

on each student’s parents’ socioeconomic status. There is variation across cities and grades,

and school segregation highly correlates with residential segregation. As our index allows for

multiple simultaneous interactions, in a second application, we use it to measure ideological

segregation in media outlets’ consumption for different media platforms -newspapers, radio,

TV- for 28 European countries. There are systematic differences in segregation across countries

and platforms, suggesting that some fundamental features, probably related to the political

environment, explain these segregation levels. The stark correlation between our segregation

measures and political polarization indexes suggests this might be the case. Further inquiry is

required to understand this relationship better.

There are numerous possibilities for future research. First, the framework can be extended to

consider other segregation problems, such as segregation in consumption patterns (e.g., cultural

consumption). In contrast to the media consumption problem analyzed in this paper, this

requires considering the consumption of goods in a continuum that differs in more than one

dimension. Another analytical extension that could be explored is the structure of the social

types’ space. Specifically, in some segregation problems, we might be interested in multi-

dimensional social types. This extension may allow us to understand the extent to which smaller

groups and intersectionality drive racial or socioeconomic segregation. In concrete, it seems

crucial to have a framework to understand if racial segregation is associated with the isolation

of low-income people (as opposed to more affluent individuals that could be less segregated).

Relaxing the social proximity axiom to allow for not monotonic measures in the social distance
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and achieve a maximum at an intermediate level of social diversity is also left for future research.

The framework presented in this framework is also well-suited for a richer understanding of the

dynamics of segregation. By explicitly accounting for the space of social types and the landscape

of interactions, it may allow decomposing time-changes in segregation associated with the social,

market, or regulation forces that affect these primitives of the framework.

A Appendix: Main Proofs

Proof of Theorem 1 From von Neumann Morgenstern utility representation theorem, a

complete and transitive preference relation satisfies continuity and independence if and only

if admits a expected utility representation:

S(µ) =
∑

(i,j)∈Π

µ(i, j)ρ(i, j).

Using anonimity axiom we get the result. 2

Proof of Theorem 2 First, let’s prove that axioms 1-7 imply S = cov(dΛ, dΣ).

It is direct to see that axioms 1− 3 imply: S =
∑

(i,j)∈Π

µ(i, j)ρ(i, j). By axioms 4 and 5,

S =
∑

(i,j)∈Π

f(dΛ(λi, λj))g(dΣ(si, sj)) (A.1)

for some decreasing functions f, g. Moreover, by axioms 6 and 7, the functions f(·) and g(·) are

linear. Then, there exit constants m0,m1 and r0, r1 such that:

S =
∑

(i,j)∈Π

(m0 −m1dΛ(λi, λj))(r0 − r1dΣ(si, sj)) (A.2)

Note that
∑

(i,j)∈Π µ(i, j) = 1 imposes a constraint over parameters m0,m1, such that:

m0 =
1

Π
+m1dΛ (A.3)

Plugging this in equation A.2 and with a little algebra we obtain the result:

S = m0r0 − r0m1dΛ(i, j)− r1m0dΣ + r1m1

∑
(i,j)dΛ(λi,λj)dΣ(si,sj)

Π
(A.4)

=
r0 − r1dΣ

Π
+ r1m1

[∑
(i,j)dΛ(λi,λj)dΣ(si,sj)

Π
− dΛdΣ

]
(A.5)

= ρ+ r1m1cov(dΛ, dΣ) (A.6)

which completes the proof in this direction.
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Now suppose a segregation measure proportional to S = cov(dΛ, dΣ). Note that the contribution

of each interaction takes the form: (dΛ − dΛ(λi, λj))(dΣ − dΣ(si, sj)), which is a decreasing

function of the spatial and social distances. Moreover, any additive variation in dΛ(λj , λj) only

changes the first component in an additive way, and same for additive variations in dΣ(si, sj).

Thus, axioms 4-7 hold. The proof of axioms 1-3 is analogous to the previous theorem. This

completes the proof. 2

Proof of Proposition 1 In order to prove the proposition, we first prove the following auxiliary

lemma.

Lemma 1 Consider an assignment satisfying (ULA), and suppose axioms 1-8 hold. Then,

µ(i, j) = 2
N(Nl−1) for any (i, j) ∈ Πl.

Proof of Lemma 1 We already know that µ(i, j) = 0 if xi 6= xj . Since µ(i, j) = µ(dΛ(i, j)), we

have that µ(i, j) = µl for each (i, j) ∈ Πl. With and individual resource constraint, the latter

implies that µl(Nl − 1) = T , from which µl = T
Nl−1 . Now, since µ is a probability distribution,

∑
i,j

µ(i, j) =

L∑
l=1

Πlµl,

where, with some abuse of notation, Πl = Nl(Nl − 1)/2 is the number of pairs in l. Using the

previous expression for µl, we must have that T = N/2, which yields that µ(i, j) = 2
N(Nl−1) for

any (i, j) ∈ Πl. �

From theorem 2 and lemma 1, the expression for S becomes

S =
2

N

L∑
l=1

( 1

Nl − 1

) ∑
(i,j)∈Πl

ρ(i, j) =

L∑
l=1

wlρ̄l,

where wl = Nl

N is the share of the population in location l, ρ̄l = 1
Πl

∑
(i,j)∈Πl

ρ(i, j), and Πl =

Nl(Nl − 1).

Now, with (DB), if ρ(i, j) = r0 − r1d
Σ(i, j), with r1 > 0, then ρ̄l = r0 − r1d̄

Σ
l . Combining this

with nn, we have

S = r0 − r1

L∑
l=1

wld̄
Σ
l .

Note that S ≤ r0, which is achieved with equality if and only if d̄Σ
l = 0 for all l. This is indeed

the case if all agents in each location have the same social type. A sufficient condition to achieve
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this maximal segregation is thus that L = G is an admissible landscape. Normalizing maximal

segregation to 1, it follows that r0 = 1.

On the other hand, minimal segregation is obtained by maximizing the expression
∑L
l=1 wld̄

Σ
l ,

as a function of the number of agents of each social type in each location. It can be shown that

this es achieved by the population distributed uniformly across locations or by having all agents

in the same location (which is equivalent to setting L = 1). In this case , for all l, d̄Σ
l = d̄Σ.

Minimal segregation is thus Smin = r0 − r1d̄
Σ and normalizing minimal segregation to 0, yields

r1 = 1/d̄Σ. 2

B Appendix: Minimal Segregation in Media Consumption

Let G be the number of social types. For any two social types s, s′ ∈ Σ, define As,s′ = dΣ(s, s′)−

dΣ.

Suppose assumption ULA holds. LetNs be the number of agents with social type s, and Nls

the number of agents type s in location l. We define xl = (x1,l, ..., xG,l)
′ ∈ NG as a vector such

that xl,s = Nl,s. In this context, the minimization problem reduces to:

min
xl∈NG

∑
s∈Σ

∑
s′∈Σ

As,s′ ·
L∑
l=1

Nl,sNl,s′

s.t.

L∑
l=1

Ns

This is the general problem to be solved. Note that the problem corresponds to minimizing

a quadratic function over a simplex.

C Appendix: Examples and Additional results

C.1 Community Operations: An Illustrative Example

When comparing segregation levels across communities, we keep fixed (N,Σ, ρ), and study how

changes in the distribution of agents over the space of interactions affect segregation.

Consider the study of school segregation by income. Students are characterized by their

family income, which can be low , middle or high. We denote this social space by Σ = {l,m, h}.

The proportion of each social group in the population are given by
(
Nl

N ,
Nm

N , Nh

N

)
= (0.25, 0.5, 0.25).

The space of locations Λ is composed by eight schools, all of which have the same capacity.
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Each agent i has associated a social group si ∈ Σ, and a an assignment xi ∈ X. We assume

that students only interact with other students in the same school.

Consider three possible distributions of students across schools. Each of these distributions

will generate a different community, which we denote by C1, C2, C3. In Table 4 we illustrate

the distribution of social groups across the space for each of them. Each column represents a

different community, and then we compute segregation on each of them separately. Each row

corresponds to a location in the space (i.e. a school). The triplets on each cell correspond to

the share of low, middle and high income students on each school, for a given community. For

instance, in the first community, schools 1 and 2 have only low income students, schools 3 to

6 only middle income, and schools 7 and 8 only high income. In community C2 there is some

mixing, so for instance half of the students in schools 1 and 2 have low income, and half have

middle income.

Table 4: Distribution of students (As a share of school capacity)

C1 C2 C3

School 1 (1,0,0) ( 1
2 , 1

2 ,0) (1, 0,0)

School 2 (1,0,0) ( 1
2 , 1

2 ,0) ( 1
2 , 1

2 ,0)

School 3 (0,1,0) ( 1
2 ,0, 1

2 ) ( 1
2 ,0, 1

2 )

School 4 (0,1,0) ( 1
2 ,0, 1

2 ) (0,1,0)

School 5 (0,1,0) (0,1,0) (0,1,0)

School 6 (0,1,0) (0,1,0) (0,1,0)

School 7 (0,0,1) (0, 1
2 , 1

2 ) (0, 1
2 , 1

2 )

School 8 (0,0,1) (0, 1
2 , 1

2 ) (0,0,1)

The distribution of students across schools generates probabilities of observing each type

interaction. For instance, the probability of observing an interaction between two low income

children in district C1 is 1/4 (they can meet in two out of eight schools). This is the aggregate

intensity function µ̃Σ defined in equation 2.3, when µ is correctly normalized. Let µ̃1
Σ be the

aggregate intensity function of community C1. This function satisfies µ̃1
Σ(l, l) = µ̃1

Σ(h, h) =

1/4; µ̃1(m,m) = 1/2, and µ̃1
Σ(s, s′) = 0 for s 6= s′.

Following the same reasoning for the second community, we obtain µ̃2
Σ(l,m) = µ̃2(l, h) =

µ̃2
Σ(h,m) = µ̃2

Σ(m,m) = 1/4, and µ̃2
Σ(s, s) = 0 for s ∈ {l, h}. It is clear that community 1 is

more segregated than community 2: in the first one students with different income levels do not
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interact, while in the second one there is some mixing.

Now suppose we are interested in combining communities 1 and 2, to obtain a community

C = αC1 + (1 − α)C2 with α = 1/2. This is analogous to combining the interaction intensities

generated by communities C1 and C2: the new community C is consistent with a new intensity

µ̃ such that µ̃(s, s′) = αµ̃1(s, s′) + (1− α)µ̃2(s, s′), for all s, s′ ∈ Σ.

Note that this combination generates community C3, represented in the third column in

Table 4. The interaction intensities are as follows:

µ̃3(l, l) = µ̃3(l,m) = µ̃3(l, h) = µ̃3(m,h) = µ̃3(h, h) =
1

8
; µ̃3(m,m) =

1

4
. (C.1)

C.2 Equivalent Metrics

Lemma 2 Let f, g : R → R be increasing, continuous and subadditive functions. Then, the

order of segregation is preserved for any metrics d′Γ = f(dΓ), d′Λ = g(dΛ).

Proof. For any function f we can do a first-order approximation around E(d), so that

g(d) = g(E(d)) + (d− E(d))
∂g(d)

∂d

∣∣∣∣
E(d)

Thus, without loss of generality fix dΓ, and take g(dΛ). Then,

cov(g(dΛ), dΓ) = cov

(
g(E(dΛ)) + (d− E(dΛ))

∂g(dΛ)

∂dΛ

∣∣∣∣
E(dΛ)

, dΓ

)

= cov (g(E(dΛ)), dΓ) + cov

(
(d− E(dΛ))

∂g(dΛ)

∂dΛ

∣∣∣∣
E(dΛ)

, dΓ

)

=
∂g(dΛ)

∂dΛ

∣∣∣∣
E(dΛ)

cov (dΓ, dΓ)

Thus, the order is preserved. Moreover, g(dΓ) and dΓ are equivalent metrics. Following the

same reasoning for dΛ, we get the result. 2
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